AL

3, Jist of conjectures.

3.1 _ IT E is unramified over p, if G is quasi-split over np, if
Kp is hyperspecial and if XP is so small that S(K) has good re-
duction modulo the prime ideal’l.of E over p (that is, the redu-
ced variety S,‘K) exiat and is proper and smoeth), then the set of
equvivalence classes of permissible homomorphisms ¢: 2—)3 can
be put into a bijective correspondance with a class decomposition
of Sr(K)(E) in which each clase is invarisnt under the Frobenius
action, and the class corresponding to ﬂ can be put into a bijec-
tive correspondance with Xp{K) such that the action of thé Frohe-
nius on the clasa corresponds to the action of § on Xﬁ(KL

The proof of this conjeeture seems to be the most -dif:ficult
part of the theory, and I will sketch the proeof in some of the ca-
ses in which the Shimura variety S(K) parametrizes a family of po-
larized abelian varieties with endomorphism- and level structure
{of type K). G is the group of symplectic similitudes on a B-vec-
tor space V w.r.t. 8 non-degenerate alternating bilinear form v
(on V) and the action (on V) of a simple @-algebra D of degree a2
over its center L, that is, @ = {ge GL, (V) I W (gu,gv) =
@ (c{g)u,v), clg) € I’o} , D is endowed with a positive involu-
tion ® , { satisfies Y (xu,v) = @ (u,x*v) (x€D) and L, is the
fixed field of » on L, There exist a homomorphism h: S—)Gm de-
fined over R such that the corresponding Hodge structure on VIR
is of type (1,0)+(0,1) and such that & (u,h(i)v) is symmetric and
poaitive definite., We choose an order OD of D and an OD—invaria.nt
lattice V

/A
i+ ) mp is a product of matrix algebras, ODO Zp ig a maximal

of V¥V, and we choose p such that p is wnramified in D,
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order and Vzapl Vo —)Zp is perfect, then !(ODQ ZP) =
Op ® Z, and we take X = G(L) N End vﬂp. If KP 1s suffi-
clently small then the pair (G,h) and K = KP-KP def” shimura
variety S(K) satisfying all our wanted properties. The definition
field E of S(X) is the subfield of § generated by the image of the
linear map t: D=P& given by t(x) = tr(x |Vlli’°).

S(K)(E) can be put into a bijective correspondance with the set
of (isomorphy classes of) quadruples (A,t,ﬂ,r)'), where A is an abel-
ian variety over T up to isogeny, ¢ is a homomorphism D—>End A
such that tr{x II-ie"A) = t{x) for xeD (Lie¥A is the cota.ngent spa-
ce of A),fl 15 a I.o-homogeneous polarization on A which :i.nduces
the involution # on D and l-| is an eguvivalence class for the ac-
tion of K of D.nf—module isomorphisms 'l: Hl(A,]lf)%V [ ] R,
which transform § to the form on Hl(A,]Af) induced by a polariza-
tion in A up to multiplication by an element of L @ 1 N

Sf(K)(lt.) can be put into a bijective correspondance with the set
of (isomorphy classes of) quadruples (A,l. A ll). where A is an abel-
ian variety over k up to isogeny of degree prime to p, L is a homo-

morphism Op=3End K such that tr(x lIrie"ﬁ') = %(x) for x€0,,, f\.. is
a I.o-homogeneoua polarization on 1 which induces the involution #
on OD and which contains a polarization of degree prime %o p, and
’."" is an equvivalence class for the action of KP of OD ® ]lf-module
isomorphisms IT Hl(z ]hp) :-)VO np which transform § to the
form on Hl(A ]Ap) induced by a polarization in ﬂ up to multipli—
cation by an element of L () ]lf. An isogeny from (A, ,-ﬂ,") to
(A,L‘,A’,q') 1s an isogeny from (A,¢ ,.ﬂ) to (A,L,Aj, an isogeny of de-
gree prime to p is an igsomorphism. The claas decomposition of

Sr(K) (k) is in our special case the isogeny classes.
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The proof falls into two parts. In the firat part 1t is proved
that the set of equvivalence classes of permisaible homomorphisms
- 2—-)& parametrize the set of isogeny classes in S"(K) (k).

In the second part 1t is proved that an isogeny class has the de-
cripted structure. The first part will be presented in two variants,
The firat bullts on some unproved conjectures from the algebraic
geometry, the second do not need any unproved conjectures but in-
stead a theorem of Kottwitz (which was unproved at the time LH was
publishing but which is now proved (by Kottwitz (umpublished) and
(independently) by Reimann and- Zink (RZ))).

The first variant can be outlined in the followling way:

By using the Grothendieck standard conjectures we can construct
the Tannakian category H‘-‘ (over @) of {(all) motives over l_c. We can
(without use of unproved regults) construct the newiral Tannakian
category Hﬁ (over 0} of (2l11) motives over Wi, the associated affine
f-group is the connected motivie Galois group ¢° (we have chosen
an imbedding ﬁ—bm). A sub-Tammskian category CHﬁ of Mﬁ is genera-
ted by the abelian varieties over @ gith complex multiplication
and the Tate object, the associated affine f-group is the connec-
ted Serre group 5. We therefore have a projection G—>»s. Any abel-
ian variety over € with complex multiplication can be reduced mo-
dulo p {we have chosen an imbedding ﬁ—)ﬁp determining 'l) and the
redueed variety determines g motive in ME' By using the Hodge con-—
jecture for abelian varieties over & with complex multiplication
we can extend this qperation to a functor CHﬁ-—i>H§. If LT is
a CM-field asnd LUME is the sub-Tannakian category of CMG genera—
ted by the sbelian varleties over B with complex multiplication
through I, and the Tate object, then the associated affine §-group
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is= I’S, and if we let I’M& denote the sub-Tannakian category of HE
generated by the image of I‘CMﬁ by the reduction functor, then I'ME
is algebraic and by using the Tate conjecture over a finite field
we can prove that "the"™ gerb associated to I'ME is .pI'(constructed
in IR and in the appendix, we have a homomorphism Q—Pﬂ. We there-
fore have an injective homomorphism of gerbs PI' -)31'8 (deter-
mined up to conjug?_tion by an element of PI'(E)).

Now let (1’.2’,}15') be a point of S’(K)(E). To X is associated
a motive in Mg (belonging to Mg for L sufficiently large), the
homogene part of degree 1 of this motive corresponds to a represen-
tation of P. We can assume that the representation space-is v,
that the action of D on V determined by £' ie the given action and
that some polarization i’eﬁ corresponds to ¢ on V. Then the repre-
gsentation maps into 3 and the composition of this homomorphism
P—)‘& with .‘Z,-).‘P is a permissible homomorphism I B 2—)3 (that
& is permissible is easy seen in the setting of the second vari-
ant of the proof below). If we had chosen another 562{ then the
new @ would be equv:.valent to the former, and if (A l.'ll' 'f) is
isogene to (A,l. ,A,") then the corresponding equvivalence class of
permissible homomorphisms 2—)8 is the same., Conversely: a permis—
sible homomorphism JgF: 2—)3 factorizes through M and gives
thus rise to a representation of P and so a motive in Mg, this mo-
tive is the homogene part of degree 1 of the motive associated to
an abelian variety 'y over E, the action of D on the representation
space V of @ determines an actien Lo 0, on 2, and the form W on
V determines a L -homogeneous polarization ﬁ on K finally there
exist a level structure I‘ on & (because & is permissible). Thus
we have constructed a point (R, L,.ﬂ,") of Sr(K}(k), another choise
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of ¥ (equvivalent to the former) would lead to an 1sogene
point of S’(K)(E). These two maps between the set of equvivalen-
ce classes of permissible homomorphisms ﬂ H 2-—)';’ and the
set of isogeny classes of S"(K)(E) are the inverse of each other.
Then we come to the second variant.
A special point of S(K)(B) is a triple (T,h,g), where T is a
Cartan subgroup of G, h€X,, and factorizes through T and geG(lf)
{two triples are equvivalent (and identifies) if they differ by

action of G(@) on the left and action of XK on the right of g). In
the above correspondance between pointa of S(K)(E) and abelian
varieties with additional structures, a special point cor:.:'esponda
to a sixtubel (A,L ,.ﬂ.,'i,R,ﬁ') (up to isomorphism), where the quadru-
pel (A,L,A.‘T) corresponds to the point {(h,g)} and R is the CM-
algebra (= product of CM-fields) defining T (thus T(R) = § r€R"|
r.-T € I'o} and dimy R = dimg V /i) and P is a complex multipli~
cation through R on (A,L,/}) (that is, an involution preversing im-
bedding R—)Endn A). This sixtubel can be constructed as follows:
My ¢ t*—» (R@L)"® determines a complex multiplication (R,Q Y

if B is the (polarizable) abelian variety over € up to isogeny
with complex multiplication (R,§ ), we take A = B, Because D @R
= Md(R)’ D acts on A, this is &, The representation space of the
representation of %S (K sufficiently large field) corresponding
4o A (or rather, to the homogencous part of degree 1) can be iden-—
tified with V such that the action of P defined by ¢ is the given
action and the "disgonal™ action of R on V 18 that of T. We let

A be the Lo-homogéneous polarization on A defined by P, and il-
be the set of isomorphisms Hl(A,]Ilf) = V@R, —l) V@I, given
by Kg~' and we let ¢ be the "dlagonal® action of R on A. If we
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reduce (A,L,A,ﬁ,R,") modulo p we get a speclal point (ﬁ',t,.ﬁ,‘l?,ﬂ,s)
of Sp(K)(k).

The second variant can be outlined in the following way:

Given (T,h), if we choose a g € @¢(R,), then to (T,h,g) we have
constructed a special point (A,¢,4,%,R,# of S(K)(E) and (by reduc-
tion module p) & special point (K,i',ﬁ',ﬁ,n}) of S'.(K)(fc), the iso-
geny class of Sr(K) (i) containing the point (ﬂ',f !qu) is indepen-
dent of the choilse of g. The isogeny classes of S'(K)(E) conatruc-
ted from (T,h) and (T%H) are equal if and only if VT, and (pT,’
(see appendix) are equvivalent. This is a consequence of the fact
that the existence of an isogeny from (a,c,A) to (MT.A} is equvi-
valent-to the existence of an automorphism g of V@ I satisfying
the conditions (we have here identified Hl(A,Ill) and V in such a
way that { corresponds to the given action of D on V and that the
bilinear form ¥4 on Hl(A,IH) associated to some A€/ corresponds
to@ , and analogous for X):

1)} g commutes with the action of D

2) g transforms ﬂ' to A

3) if we identify the contravaria.zﬁ: rational Dieudonné module

asaociated to 3' resp. K'with VOA, where the F-translation
is given by xﬂgd(x) resp. xﬂiga(x), with § = X.(S’o) resp.
¥ - x,'(go) for go € 5s(#), then we can choose s € T(ﬁp)
such that g = g5 € ¢(@™) ana 87 = F'G(E' (for X ana A’
see below)

4) if we identify the f-adic (£ # p) cohomology spaces associa-

ted to § and I’ with inner forms of V@ B, , then g shall
transform these spaces to each other

5) if the Probenius endomorphisms on & and ¥ over kJ (for j
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sufficiently large) correspond to the automorphisms E
and E’ on V, then we shall have € = ggg"‘ (for j suffi-
ciently large),
these conditione for g are equvivalent to the conditions:
1) g€ o(@)
?) g is an equvivalence for the two homomorphisms ()} on
the kernel
9, ___)-—-—-> ey ®
here g4 is the canenical cocharacter of KS ”a is de-
fined in the appendix and the homomorphiams x : S-—)T
and x’: KS—-) ™ are defined over 0 and map ik, to N a.nd/ah,
o) g is a locally equvivalence for the two homomorphisms )
wor.t. oz WP, .Tp : J»P and .z: '&—)ﬁ (for 2% p).
Eketch of proof: 2‘) follows from 5) and the definition of ’l/lu.
2) is tantamount to ‘V(gx,gy) = (ax,y) for some a €L ® a,
and W{1)s & = g(h(i)’l&)g" , but asince v(h (L)% ¢) "=ﬂ {(-1)#=¢
(’0 .Y..)R'), where v = (say) Sﬂ /ao)(‘f_), we have & '-f
= ad go( 1) .T.p) ir b € K'S“,) determines the F—translation
and b € S(‘) ia constructed from %o'fp .3-){11[8 {(ag in 1.2),
then the theorem of Kottwitz states that b = u b O(u )™ for some
L3 eKS’(ﬁ), in fact u € Im p (Pl)), we therefore have b =
B, v = u @) ana v’ = gE~! (u = Alwy), ... ),
the condition T = &b 6(gJ" is then equvivalent to ¥ = Zb F(Z),
this implies that b also can be constructed from ad g e (@, © fp),
therefore we must ha.ve /“h’ ')’ =ad g* (fﬂ/ah . .r ). The above men-
tioned forms of V@ Ill are determined by a homomorphism ![
ﬁ,——)ﬁ (a trivialization) and this fis equvivalent to J,:
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&9@, 4) is tantamount to %h’ gl’: ad g'(ﬁ)ﬂh.ﬁ’)' but
this condition is equvivalent to "3“}:{'% = ad gv(%h" 5})(1,3_
cause "3“11" .; = ad y’e (pﬂh" .;’) = gd y'ead gO(’ﬂ#h- _") =

ad gead y o (@ * .r") = ed g (P, .E), here y = {g (y) and
v'= YY) 12 Jp = adro,‘r; for YCP(EI))-J

Now we shall use that two homomorphisms P,?': y—a‘ﬁ are equal
if they are equal on the kernel and locally equal and that the
two homomorphisms (%) composed with the homomorphism 2—)5) are
Prp, 2 P - :

Since every permissible homomorphism ﬂ : 2—)5 is e(_luviva-
lent to one of the form PT!/“h (IR, Satz 5.3) we can consequent-—
1y define an injective map from the set of equvivalence classes
of permiasiblé homomorphisms ,6 H 2—"‘5 to the set of isogeny
classes of S'(K)(E). This map is surjective because every pOiI.].-t
(ﬁl,f,mﬁ) of S'(K)(IZ) is component of a special point (K,Z’,K,q,n,,;)
for some R and 5 (because ¥ ie defined over a finite field), and
a speclal point of S'(K) (&) is the reduction modulo p of a spe-
cial point of S(E){(E){(z2, § 4.4).

Now we come to the second part of the proof.

Iet @ :2—"5 be a permissible homomorphism, and let A C
S';(K)(E) be the corresponding isogeny class, then we shall con-
struct a bijection efe —9» y,\(xpr XP/KP) such that the Frobenius
action (overfe) onJ corresponds to the action of Q = (bn 0T

P
To (P,h,g) we have constructed a special point (A,l ,-ﬂ»,i,R,,) of
S(XK)(E) and (by reduction modulo p) a special point (K,i',ﬁ,ﬁ,n})
of S'(K)(E). of is the isogeny class containing (K,f,z). We iden-
tify the contravariant rational Dieudonné module of A with veo.g

on X_, We can assume that ﬂ = PTﬂh and we choose a g € G(lf).
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as sbove, then the F-translation is given by xdgd(x), where
%'eT(&), futhermore b = u'b o{u), where b ia constructed from "}
(as In 1.2) and u€T(f). In the first variant this follows from
the Taect that 3 is the gerb associated to the Tannskian catego-
ry of isocrystals over . , and that the association of the con-
travariant rational Dieudonné module to a motive in Mg corres-
pondas to the operation of composing a representation of P with
a homomorphism & ~»F which is equvivalent to Yp 3 3 —>» P
(IR, p. 162), and in the second variant this is the meaning of
the mentioned theorem of Kottwitz.

Ir (K',?JI';%‘)GJ and if &« 1s an isogeny from (E,T,ﬁ)'to
(f’,i’,ﬁj, then we can construct an element (xp,xp )€ XI;- XP/EP as
follows: &« is the composite of an isogeny ap whose degree 1s di-
visible by p and an isogeny o whose degree 1s prime to p, up
induces a homomorphism from the contravariant Dieudonné module
of ¥ into V@ , let W be the image of this, then M7is a lattice
of V@ and M= g(VZQ%) for some g € G(§). If we take x, =
ugx, € Gﬁ)xo (see 1.2), then x_¢€ p &P is 1n-fac'b an iso-
morphism between (ﬂ',f,m and (i",?:m, and since R"' ¢an be ree
garded as an element of XP/KP, q’ determines an element xP of
XP/kP. The class of (xp,xp) in Iﬂ\(xp' xP/kP) is independent
of the choise of of , and the ma.py‘ —bIg\(xp' IP/kP) is &
bijection (remark that we have an isomorphism Iﬂf-)Aut(ﬂ',T,ﬁ
and that u debermines an isomorphism J",f)Aut(VO.&,L,fP})):_

The Frobenius action (overk) on o4 is given by (K’,?,E’,ﬁ')ﬂ
mQ),ﬁq)ﬁq),a’(Q))(the inverse image by the Frobenius over [ )
and if we as isogeny from (K,f,ﬂ) to (‘X‘(q’,?‘(‘l).ﬁ“Q)) choose & com-—
posed with the Frobenius isozeny from (i",f'ﬁﬁ to (ﬂq)'ﬁq)ﬂq))’
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then the lattice of V@.4 associated to K’(q) is the image of M’
by the r—th power of the F-translation, that is (F 6 )W, and
the elfment of XP/kP associated to ql(q) ia (by the definition
of ﬁ" (q)) that associated to r]". The Frobenius action on o‘
18 therefore given by the action of § = (b®d ) on XP.
This bijection between the set of equvivalence elasses of
permissible homomorphisms & : 2%3 and the set of iso-
geny classes of S,.(K)(E) can be refined to a bijection between
the set of equvivalence classes of j-K-permissible pairs (#,€}
and the set of j-isogeny classes of Sr(K)(kj). A j-permissible
pair (#,€) is j-K-permissible if (Ig)e\ (Yg x YP) (see 1.2) is
non-empty, that is, if 1) Ix€X : &x = Px ana 2) FyexP:
y?€ y€XP (see 1.3). Two j-K-permissible pairs (@,€) and (BI€)
are equvivalent if & = ad gog and & = ad g(€)+z for
some g € G(T) and z € z(R)y. If (EI,E,‘,:) and (I’,"',K:?) belongs
to sf(x)(kj) then an jisogeny from (R,Z,4) to (A,e,A) is an iso-
geny which commute with the Probenius endomorphisms ower ki om

ﬁ' and * . The j-isogeny class corresponding to (#,€) is that con-
~ N s

taining the point (A,l ,ﬁll) of S,.(K)(u:J ) constructed as follows?
Ve can assume that & = WT, and € € T(m) (IR, Lem—
ma 5.23)., let vE€ T(ﬁp) and b GT&) be constructed from
ﬂ o ?p as in 1,2, Choose gpc Gw such that for x = gp-xo
s £°x= @ Jx and y €x° such that y € y €KP, and if
the P-tranalation on the contravariant rational Dieudonné mo—
dule VQ.& of ¥ (constructed from {(T,h)) is given by x ¢}

~ ~
f &(z) where b € TiR), choose u € *() such that b = ubd(u)".
Tet g € 6(Ry) be defined by g = v‘h"gp and gf = y.
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To (T,h,g) we have constructed a special point {(A,L ,ﬂ,l',-,R,'}) of
S(K)(Z) and (by reduction modulo p) & special point (i',i’,ﬁ.f.n.i)
of Se(X)(K), (i’,‘c",ﬁ',f-l') belongs to s,‘(x)(k.-'l) and the j-isogeny
class of (ﬁ',t,ﬁ‘.,ﬁ) is independent of the cholises, The lattice
L=gV,; of V (and the complex structure on VTR given by h)
defines an abelian variety AO over B in the isogeny class of
(A,4,40 (namely A, = ((V@R)/L*), and since £€6(Q) and E1
< I, £ defines an isogeny on (AO,L,.Q and the reduction of
this to (K,z,ﬁ’) is the Frobenius endomorphism over Kl

The above bijectlion between the isogeny class corresponding
to @ and I’\ (XPIXP/KP) has in the present setting as ana.,logous
a bijection between the j-lsogeny class cA4 corresponding to
(@,E) and (I’)e\ (Ylj)'tYp): if in the above proof we choose of such
that it transforms the Frobenius endomorphism (over k.j) on T{'
to £ 6%, then xp belongs to Y%C Xp and xP belongs to PC
XP/KP, the class of (x,,xP) in (Ip.)s\ (Yg-ip) is independent of
the choise of &, and the map .4 —-9(1’.)&\ (Ylep) is a bijection.

A j-triple (€,8.y) consist of a S-GG(Q)S_B_ which is ellip-
tic at infinety, a § €G(F*) (n = jr) such that m'Fnlﬂ s is
stably conjugate to € and a Z'S G(&)(for each f # p) such
that Yl is stably conjugate to £ {and conjugate to £ for al-
most all £ ). The j-triples (¢£,§,)) and (E‘;S’.r‘) are equvivalent
if £ and £ are stably conjugate, § and §  are G(F')-¢ -conju-
gate, and ¥ and J are conjugate, and they are K-equvivalent
ir (9:8’,,") is equvivalent to (E=z,§w,)z), where zGZ(D)K and
wvCZ(FM)N Kp(drn) éatisfiea Nan/Uip w = 2. We will not distinguish
between a j-triple and its equvivalence claas.
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The Kottwitz invariant of a j-triple (£,§,y) is the element
ﬁ(s,f) € 'J{(GE/Q)D (see 1.7)(if Envyg &’ (stable conjugacy mo-
dulo z(W)g) we can identify C(Ge/W)° and M (G/M)°, and
K-equvivalent (£,§,)) and (8’,8’,’9 have equal Kottwitz invariants
(IR, Lemma 5,18)).

To an equvivalence class of j~permissible pairs @,E) e
have {in 1.3) constructed an equvivalence class of j-triples
(8,8-?). The XKottwitz invariant of a such j-triple is 1, and con-~
versely: any j-triple whose Kottwitz invariant is 1 is the j-
triple of & j-permissible pair (IR, Satz 5,25), precisely i(g)
inequvivalent j-permissible pairs have the same equvivalence class
of j-triples (8,8.)’). Therefore we can to every j-isogeny class
b of S’(K)(kj) associate a K~equvivalence class of j-triples
(£,8,Y), namely that associated to the equvivalence class of
j-K-permissible pairs corresponding to d. The K-equvivalence
clags of j-triples of the j-isogeny class containing (K.? ,E,g)s
S'(K)(k,j) can be consiructed directly as follows: The Frobenius
endomorphism on ‘K {over kj) determines an automorphism E of VOE,
it belongs to G(ﬁ) and can be chosen- conjugate to an element &€
G(m) s.8.° If the FP-translation on the contravariant rational Dieu-
donné module VO£ of ﬂ' is given by x»d gd(x)(geG(é)), then ".b' =
gﬂ'G(g}" (remark that é'ee(m‘l’)n) because it is conjugate to E)
and we must have Nan/m T = E ¢ 162 (c) for some c €G{&), we
take 8 = cbo(c)! (thenp66 G(F")). Finally the Frobenius endo-
morphism (over X J) on 1 deternines via a qﬁﬁ an automorphism
x' of V’“J {(for £ # p), this belongs to G(m‘)(in fact it is
conjugate to an element of 19).

A long step toward a proof of the conjecture in the general
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case would were taken if we to every point of S‘.,(K)(RJ) can con-
struct a K-equvivalence class of j-triples and prove that its
KEottwitx invariant is 1.

322 ILet G be an unramified connected reductive mp-group (such
that Giep 19 simply connected), let K be a hyperspecial sub-
group end let F be an unramified extension of mp of degree n.

Iet ¥ be a G(F)-conjugacy class of homomorphisms &, —> 6p
such that one (=nd so all) of the representations of €, on
I.:[e(Gﬁ- ) constructed from homomorphisms in M has no other weights

P
than o,%1, let £ € €(G(F),K(@,)) be the characteristic func-
tion of the coset in K(%)\G(F)/K(@F) corresponding to M (see
1.2) and let ¥ € YEC(R,),K(Z ) be the image of 7 by the
base—change homomorphiam (characterized by the propexrty that
sr M (£) = tr :‘E' ), where @°’= ' un for every admis-
¢ d P = Ploar(@™/r)’

sible homomorphism @ : Gal(lngn/tllp) — T;0 Gal(m;n/lllp)).

If eeG(tnp)”E (defined as in 1.4 but w.r.t. M), let T be an
elliptic Cartan subgroup of Gg and let & >4 I¥(T) be M&-con;]u-
gate to a /“ satisfying the condition in 1.4, then the element
b& € TC&) constructed from the homomorphism %“: ﬂ — T(ﬁ-p)"

- s , _ 1.0
Gal(ﬂp/mp)(see 1.7) s'atisfies NIIF/mp be—- € clg®(c)(c € ),
- . : - =~
and if 8& = cbed(c) then SSEG(F)(and NmF/ﬂ!p 83-— c€c™)
and we have

o(Gg) O(E,1) = c(ng) 10(85, ) )
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(Gg& is an inner form of G'b’ this allow us to choose compatible

measures on G-g&(ﬂlp) and Ge(llp)).

If £ € G(up)s_aj\etmp)n then 0(g,f) = o.

((#) is proved in K7 for M trivial (that is, £ and £ the unit
elements) and in AC for G = GL(n) and arbitrary T € 9€(G(F),K(@)),
F A > G(m-p)s-.s. and § € G(F) such that € iz conjugate (in G(F))
to le,.{.iu 8 - in fact, this result is conjectured true for gene-—
ral G 1f orbital- resp. twisted orbital integral is replaced by
stable orbital- resp. stable twisted orbital integral -~ in this

case SO(E,f) = o if &€ € G(illp)a 5. and not conjugaie to a

H; 1 8 )o
“F/R,

3.3 Let G be as in this paper and let (H,a,l‘)é‘g. For y €
Hm’e,(G,H)—reg and £ € G(ﬂ)e such that y is the image of £,

we have
-f - -
1y) b TE) T - 1) ey e, T

"Z(Hv) and %’(Ge) are as defined in 1.6, and the measures on
HY(]A) and Go(l) are chosen compatible (recall that Hpis an in-
ner form of G&) — this measure on H'(E) (and an arbitrary measu-—
re on H(R)) is used to define orbital integral om H., T(H) and
‘t’(G) are the Tamagawa numbers .(proved in Ké for regular ele-—
ments — we have used that Kottwitz in K8 has proved that € (6)

= 1 for G simply connected semi-simple (if G has no Eg factor}).
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3.4 Let G be a connected reductive R-group {such that Gder is
simply connected) which has discrete series representations, let

T be a fundamental Cartan subgroup and let § be a rational re-
presentation of G. For each €& G(]R)ewe choose a measure on GG(]R)
such that the measures on Gg(IR) and Gy(R) are compatible if € and &
are stably conjugate — then we have a measure on the compact (mo-
dulo Z(IR}) inner form Gé(]R) of Ge(]R). Ye define o(: G(R)=>»R by

o E) {c(Gé) tr § (€)/meas(2(RING4(R)) if E€G(R),

- o if E6G(R)N\G(R),,
If € is stably conjugate to € then OX(€) = x(C).

Let (H,s,)) be an endoscopic datum for & (we assume that l’(s)e
L‘I‘o) for which there is an isomorphism X¥(T) (—PX"(I‘TO) guch that
this, the action of Gal(E/R) on T and H(s) determine (H,s,b),
also choose an extension h’: L0 ‘-iJ]R-—)I'GON W of "' and a
transfer factor A {(*,°).

There exist a function f.é on H{R) such that

ALy, £ x(E) _ if YEH(R)
so(y,fg)"=
o if YEH(R), S NH(R), ,

here § € T(R) is chosen so that ) is the image of E via

the isomorphism X'(T)(—)X"'(LTO) {obvius for H an elliptic Car-
tzn subgroup of G, proved in LT, 56 and Ca for H = GL(2) and G
an inner form of H).

1t (H,s}) is not elliptic we take f? =o.

¥) The measure on H‘,(]{I) is of course that compatible with the mea-

sure on Gc(]'ﬂ) (EIY is an inner form of G—s).
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3,5 Iet G be as in 3.2, let (H,s,l-‘) be an endoscopic datum
for ¢ and let @ €@e(R),K) be the characteristic function
of K,

If there exist yeH(mp)s.s.,(G,H)—reg such that the sum be-
low is non-zero, then H is unramified ( proved in LI for H ellip-
tic Cartan subgroup of ¢ = GL{2)). We choose an extension ﬂ’:
50 2 Gal(m;m/mp)—-’r’(}ol Gal(m;n/mp) of‘|, and we can choose
a hyperspecial subgroup KE or H(mp) such that every ye& Kl is

the image of a € &€K.
There exist a function @I & H(B(R,) K7) such that if fye

H(m )B s.,(G,H)-reg then
(v.€) 35 K(®) c(cg,) 0(% #) if ¥ 1a the image
So(y'ﬂ.ﬂ) _ ,?et(c;&/m ) oi’EGG(ﬂp)_B.
Q if } is not the image of any £
(see 3.7).

Now we assume that h(s)mez for some m.

Hotation:

Mis a G(F)-conjugacy class of homomorphisms & -"GF such
that one (and so all) of the representations of &, on L:I.e(Gm )
constructed from homomorphisms in M has no other weights ‘I:han
o,-l.

d;acx'(l'm") is the Weyl-group orbit determined by M.

°r is the (finite dimensional) representation of G°w
Gal(ln /F) (unique up to equvivalence) which is irreducible on
Lgo h.a.v:l'_ng extreme PF°_weights .ﬂs/u, and for which Gal(U)"/F)
acts trivially on the I‘.Bo—highest weight space,

r 1s %r induced to ‘GOw Gal(mgn/illp).

ng [F: IﬁpJ']N.
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Te ')C(G(Il}p) ,K) is associated to the class function x4
tr r(x™) on Lo . Gal(ﬂ;n/mp) by the Satake transform,

Y € H@)), .. (a,H)-reg 15 the image of € € &(N,)" (defi-
ned as in 1.4 but w.r.t. M),

A Cartan subgroup T of Gg and an isomorphism X'(T)(—’X’(I'To)
are chosen such that they arise from the correspondance between
Y and & (see 1.9).

/“oe X‘(T) is Mg-conjugate to a A4 satisfying the condi-
tion in 1.4.

0.8 is the restriction of °r to I'Hoal Gal(mgn/]?) {via ']p}.

€ = ‘ty( -/ao)( ’](S))Lue‘gakroots of unity.

For 1€9¢, ° »rd 59 the subrepresentation of OpH getermined

by i,ucﬁ,ulja - ) (A=) = i}

rvl 59 Opfrd jn3uced to THOw Gal(mun/lﬂ Y.

fge ﬂe(H(mp),K ) is associated to the clasa function x %
ﬂi tr rH'i(xn) on THCx Gal(m;n/mp) by the Satake transform,
1‘*Then: f;I is independent of the choise of £ and we have

soly, e g = Ap.0)3, K@ °(°;fe’ o(%e,2%@).
gelicg/n,)
If € € 6(T,),  \G(R)" then o(c.f
Ir Y€ H(mp)s.s.,(G,H)-reg is not the image of any € €
G(!llp)r1 then So(r,fﬁlﬁﬁ) = 0, here 2 is constructed as above

but /uoex’{I'T% is chosen arbitrary.
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3.6 let G be as in 3.4, There exist a function £ on G(R)
gsuch that
50(€,£%)%- ar ()
for £ € G(]R)s.s. {proved in L7, "6 and Ca for G = GL(2)}).

Tet (H,s,h) be as in 3.4, and let 916&(3) be such that ? =
l)'npei((})e. Ye can assume that (p(n:") C Lp% o* ana P =
gw®¢ where g€ Norm 0(1"1‘0). The action £ on I'To given by ¢ )
corresponds (via X%{( O)HX‘(T)) to the action on T given by the
non-trivial element in Gal(l/R), therefore Lpo, Gal(E/R) for this
action is the IL—group of T, To P is (by the Ianglands cownrespon-
dance, see Bo) associated a continuous regular character 20 of
T{R) and 8o a discrete series representation ‘17'. of G(R)}, this
belongs to 'n.'(@ and we have

L, o) W) = e Kh(e), WD S3<1, D tr (%)
TeMp) ey

(for ey and <+,+> see 3.7).

We can as a matter of course replace the isomorphism X,(T)e
x¥L1°) by the composite with a WEJL (1%, %) = S (c(),r(r))
{because the action of @ on T is defined over R), if we do Bo
we must multiply f° and ('\(s),‘m) by k@R (= 1), where Kk
is the character of HU(R,T) = G'Q(I'T"‘."’)D determined by {l](s)}e
ﬂo(I‘TO&), as we note that .,R,(G(E),T(E))/JZ.(G(R),T(]R))'= Dir/m)
c HY(R,T) ana W(s), WD = kdwP <h(s), WD, here W is
attached to J\,vw.

¥ The measure on Ge(m) is of course that entering the definition
of & .
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3.7 Let G be a connected reductive mu—group { v place) (such
that Gder is simply connected) and let- (H,s,l,) be an endoscopic
datum for G. Choose an extension l,": LHO » Lmu—-’ L50 Lm'
of §, and chocse a transfer factor A"'(Y,ﬁ).
There exist a e, € E" such that the following is true: if
the functions f on G(R,) and 1 on H(R,) are connected by
Aér,E) z KE.G?)/E(()}JC) 0(" .F) if ErclaG‘E:he image
So(r,fH) = S € E(5 /0 of B)s.s.
0 if Y is not the image of any £
(here ¥ € H(mu')s.s.,(G,H)-reg)’ then we have for each yc@ (H)temp
such that @ =h“epeE P(a):

z,ﬁ%.‘n‘)tr‘h‘(f}l) - e,£<q,('?) > trir(e),

¢,) is the usual pairing $ '"'(?)-—-)E , where % SP/(Sf)o
(E‘v/z) and S? {ge G 'ad gogp = y} €+, *> is not ca-
nonical, but this does not matter, since the global <+, *> which
is the product of all the local &, *» is canonical,
For a given function f on G(m‘,)(sn_:ooth and of compact support)

H on H(RQ,) such that f and T are

we can construct a function T
connected as above (see LL for G¢ = GL(2), LS2 for G a form of

S1(3) and Sh for = od.
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3.8 Let G,fG be as in 3.6, and let ?GQ(G)temP. Ifr}:hlfr)qr(f(;)
€

4 o, then ¢ is elliptic and 'ﬂ'(sa) is the L-packet of discrete

series representations of G{R) associated to one of the absclut-

v
ly irreducible components g of g, futhermore we have

a 'ﬂ'(?) ¥
Zﬂq:rf(fG) = (-1)%smultiplicity of in (this result
Tey) Me)

is used only in the coneclusion),

Let G,H,f1 be as in 3.4, and let @ eQ(H)temp. If ,Z;n;(cr x5
$ o, then @ and ¢=q‘-¢ are elliptic (and so @ is g;nissi)_ble
for G).

Let G,H be as in 3.7, and let the function @~ an H(Q,) be
connected with the characteristic function & of X (compact open

subgroup of G(ﬂlo.)). ir %’éﬂ%’(;;;>trw@}l) { o, then ? _ p,losu

is admissible for G.

3,9 Tet G be as in this paper and let (H,s,"’) 6& . Let Fe
H(M)e,(G,H)—reg and £ € G(ﬂl)e_ be such that ) is the image of
& . Choose the local transfer factors A'(-,-) such that A.EY,E)
= 1 for almost all places ¢r and 'H'A“(f,i:',) = 1. Then ey = 1 for

r
almost all places y and ‘Weu, =1,

v
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3;10 We assume that (a sufficiently large part of) the Lang-
lands correspondance has been consgtructed - that ia, for a given
reductive algebralic group, we have a map (having the expected
properties) from the equvivalence classes of admissible homo-
morphisms from the Weil- (or rather the Langlands-) group into
the I—-group associated to the group to the L-packets of repre-
sentations of the group - the map is a bijection in the locael
cagse and maps to automorphic representations in the global case.
et G be a connected reductive {—group, let Z be a closed
subgroup of Z(R) of the form '"' Zv {(Z center of G) such that
ZZ(II)) is cleosed in Z(m} and ZZ(II})\Z(F.) is compact, let x
be a character of (Oznz(n))\oz and let §(G)e be the set of
{equvivalence classes of) elliptic tempered admissible homomor-
phisms ?: Im._>I-G0p Im such that Zf'oz =x (Lﬂ is the Lang-
lands group, it is an extension of Wm by a compact group, see

15 and X3). Then the stable tempered cuspidal part of the trace

di'pt%e)e Fe ) n"'tr‘mf}

(see K3), dgp is the number of (global) equvivalence classes in
4

is

the local equvivalence class of ?(dq different classes of @(G)

parametrize W}) and ne = GP,%I-{l,ﬁ')is the "stable multi-

plicity” of 97 (for all this see LL)}(f is assumed to be of the
_' X
form f = '"'f,- and to satisfy flzg) = X(z) £(g) for z € Z, and

w(s) = {G Me) £g) dg).
This part of the stable trace is "contained™ in the stable

elliptic part of the trace.



