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Introduction

LANGLANDS shows in his paper L6 how the zeta func-
tion of certain Shimura varieties can be expressed as a 
product of L-functions associated to automorphic repre-
sentations of the algebraic group G entering the descrip-
tion of the Shimura variety (or rather, the endoscopic 
groups for G). The group G is here (roughly speaking) 
obtained by scalar reduction to ℚ of the multiplicative 
group of a certain quaternion algebra over an algebraic 
number field. The paper L6 is concerned with the local 
zeta function of the variety obtained by reducing the Shi-
mura variety at a (finite) place of its definition field whe-
re it has good reduction, and it is based on a description 
of this reduced variety which was unproven (and which 
was formerly presented in L2 and L3 - a more detailed 
account can be found in M1 and M2).
   L6 is a contribution to a theory which in some future 
should tell us how we can generalize some classical re-
sults, such as that (due to Eichler) saying that the zeta 
function of a modular curve Γ\H (H the upper halfplane 
and Γ some congruence subgroup of SL2(ℤ)) can be ex-
pressed as a product of L-functions associated to auto-
morphic forms on Γ\H (or otherwise speaking, to auto-
morphic representations of GL2(𝔸)), can be analytically 
continued, and that the analytic continuation satisfies a 
functional equation.
   The proofs of the classical results are based on congru-
ence relations between Hecke operators and the Frobeni-
us, and this method does not seem to work for general 
Shimura varieties. The proof in L6 is based on the Sel-
berg trace formula and is in some simpler cases presented
in L3, Ca and La (see also BL, HLR and Ra), but the ca-
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ses studied in L6 take care of a complication that arises 
by the fact that whereas an L-function is associated not to
a single representation but to an L-indistinguishable class 
of representations of G(𝔸), two L-indistinguishable re-
presentations can occur with different multiplicity in L2 

(G(ℚ)Z(ℝ)\G(𝔸)). This misfortune can be restored by 
using L-functions not associated to representations of G, 
but to representations of the so-called endoscopic groups 
for G. Even though the endoscopic groups in the cases 
studied in L6 are of a rather simple type, as they are ei-
ther elliptic Cartan subgroups of G or the quasi-split inner
form of G, L6 nevertheless gives ay in the general case.
   Two circumstances, however, make it difficult imme-
diately to generalize the method of L6. A class decompo-
sition of the points of the reduced variety is parametrized 
by equivalence classes of so-called Frobenius pairs, but 
different domains can correspond to the same equivalence
class because the equivalence relation is of local nature 
where it ought to be of global nature. Moreover the num-
ber of points left fixed by a power of the Frobenius is cal-
culated explicitly by a complicated combinatoric argu-
ment.
   In Langlands and Rapoport's paper LR the first difficul-
ty is remedied - the description of the points conjectured 
there is more elegant and will possibly cover also the case
of bad reduction (see Ra), and (exect for some standard 
conjectures of algebraic geometry) it is proved to be true 
in the case of good reduction for certain Shimura varieties
that parametrize families of polarized abelian varieties 
with endomorphism and level structure.
   In Kottwitz's paper K4 - a special case is worked out of 
an idea which seems to make it possible to reduce all the 
combinatoric calculations in L6 to some standard pro-
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blems in harmonic analysis: the relation between orbital 
resp. twisted orbital integrals of associated functions in 
the case of passing to endoscopic groups resp. the case of 
base change.
   In the present paper I will show - by using primarily the
material of LR and K4, and building on the ideas and 
techniques of L6 - how a proof for the expression of the 
"tempered cuspidal" part of the local zeta function in 
terms of L-functions in the case of a general Shimura va-
riety should be set up: the proof will build on some preci-
sely formulated conjectures of general nature. The purely 
formal part of the proof is presented in section 2, section 
1 is devoted to an explanation of each step of section 2, 
and section 3 is a list of all conjectures used.
   It is necessarily to presuppose that the reductive ℚ-
group G is such that Gder is simply connected - why and 
how the general case can simply be reduced to this case is
explained in LR. Moreover, the Shimura variety in ques-
tion is assumed to be of compact type, that is, its points 
with coordinates in ℂ is a compact space, this amounts to 
demand that Gad is anisotropic over ℚ.
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1   Explanation to each step in 2

1.1   Let G be a connected reductive algebraic group over 
ℚ, and let X∞ be a G(ℝ)-conjugacy class of homomor-
phisms from S = resℂ/ℝGm into Gℝ such that if h  X∞, 
then

   1) the composition Gm →w S →h Gℝ is central (w is the 
inclusion)
   2) the Hodge structure on Lie(G)(ℝ) given by S(ℝ) = ℂ

→h G(ℝ) →ad Aut(Lie(G)(ℝ)) is of type (-1, 1)+(0, 0)+  
(1, -1)
   3) ad h(i) (which is an involution on G(ℝ)) induces a 
Cartan involution on Gder(ℝ)

(if these conditions are satisfied by one h  X∞, they are 
satisfied by all h  X∞).
   If h  X∞, and if K∞ denotes the centralizer of h in 
G(ℝ), then K∞∩Gder(ℝ)0 is a maximal compact subgroup 
of Gder (ℝ)0, and X∞ can be identified with G(ℝ)/K∞.
   If T is a Cartan subgroup of Gℝ, and if h  X∞ factorizes
through T, then we have the composite μh: Gm →ι1 Sℂ →h 
Tℂ, thus μh  X*(T) (ι1 is given by z → (z, 1)).
   We can define a complex structure on X∞ in the follow-
ing way: for h  X∞ we have a decomposition of the Lie 
algebra of G(ℂ)
                             𝑔ℂ = 𝑝h + 𝓀h + 𝑝h

given by
ad(h(z1, z2))(X) = z1

-1z2 X, X, z1z2
-1 X

for X  resp. 𝑝h, 𝓀h and 𝑝h

(𝓀h is the complexifikation of the Lie algebra of the cen-
tralizer K'∞ of h in G(ℝ), and 𝑝h resp. 𝑝h is spanned by the
root vectors attached to the positive resp. the negative 
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non-compact roots of T for an order that puts μh into the 
negative closed Weyl chamber - h factorizes through T). 
Since G(ℝ) acts on the real manifold X∞ (by conjugation),
every vector X  𝑔ℂ defines a complex vector field h → 
Xh on X∞, and the complex structure on X∞ is such that 
the holomorphic resp. antiholomorphic space at h is 𝑝h 
resp. 𝑝h.

   We choose an algebraic closure ℚ of ℚ and an imbed-
ding ℚ → ℂ, and we regard ℚ as a subfield of ℂ.
   Let T be a Cartan subgroup of G, let h  X∞ factorize 
through T, and let E denote the smallest Galois extension 
of ℚ (in ℚ) such that if σ  Gal(ℚ/E), then σμh is within 
the Ω(G, T)-orbit of μh. Then E is independent of the cho-
ice of T and h.
   If we, for any field F containing ℚ, let ℳ(F) be the set 
of G(F)-conjugacy classes of homomorphisms Gm → GF, 
then X∞ (via the assignment h → μh) gives rise to a class 
Mℂ in ℳ(ℂ) (which is independent of the choice of T and
h), this class in fact comes from a class Mℚ in ℳ(ℚ) 
(K4), and E is the definition field of Mℚ, that is, the smal-
lest Galois extension of ℚ such that Gal (ℚ/E) leaves Mℚ 
invariant.
   We now assume that Gad is anisotropic over ℚ, and that 
K is a compact open subgroup of G(𝔸f). Then it is known
(M3) that for K sufficiently small there exists one and on-
ly one (up to isomorphism over E) smooth and proper va-
riety S(K) over E - the Shimura variety attached to the 
data G, X∞, K - such that

   1) S(K)(ℂ) = G(ℚ)\(X∞G(𝔸f)/K) (this is a complex 
manifold since G(𝔸f)/K is discrete, and G(ℚ) acts freely 
on X∞G(𝔸f)/K)
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   2) for any Cartan subgroup T of G and h  X∞ such that
h factorizes through T, the following condition shall hold:
let KT denote T(𝔸f)∩K, and let Eh ( ℚ) denote the field 
of definition of μh ( X*(T)), then it is known that there 
exists one and only one (up to isomorphism over Eh) fini-
te variety Sh(KT) over Eh such that

   1) Sh(KT)(ℂ) = T(ℚ)\T(𝔸f)/KT

   2) Gal(Eh
ab/Eh) acts on π0(Sh(KT)) = T(ℚ)\T(𝔸f)/KT 

through the inverse of the homomorphism Gal(Eh
ab/Eh) = 

π0(Eh
(ℚ)\Eh

(𝔸)) → T(ℚ)\T(𝔸f)/KT defined by

                     Eh
 → Res μh ResEh/ℚTEh → NEh/ℚ T,

the imbedding T  G defines a morphism Sh(KT)ℂ → S 
(K)ℂ.

The condition is now that this morphism shall be defined 
over E·Eh (D2).
   Let ξ be a ℚ-rational representation of G (acting on the 
ℚ-vector space V), we can assume that ξ acts as a charac-
ter ν on Z (the center of G).
   For almost every prime ideal 𝓅 of E it will be true that 
S(K) has good reduction at 𝓅, that is, there is a smooth 
and proper scheme over 𝒪E𝓅 whose base extension by 
spec(Ep) → spec(𝒪E𝓅) is S(K)E𝓅. We assume that 𝓅 is 
such a prime ideal. Let p be the prime number in ℤ∩𝓅. 
We thus have a smooth and proper variety S𝓅(K), called 
the reduction of S(K) modulo 𝓅, over the finite field κ =
𝒪Ep/𝓅𝒪E𝓅 = Fq, for which the previous is the base-change 
by 𝒪E𝓅 → κ, here q = pr and r = [E𝓅:ℚp] (independent of
𝓅ǀp since E is Galois).
   In order to define the zeta function of S𝓅(K) w.r.t. the 
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representation ξ we need a locally free sheaf of ℚℓ-vector 
spaces Fξ,𝓅(K) over S𝓅(K)(κ) and an action of Gal(κ/κ) on 
Fξ,𝓅(K) which commutes with the action of Gal(κ/κ) on 
S𝓅(K)(κ), here ℓ is an arbitrary prime number different 
from p.
   This shaef is constructed in the following way (Ll): 
G(ℚℓ) acts on V(ℚℓ) by ξ. Let V(ℤℓ) be a compact open 
subgroup of V(ℚℓ) which is invariant under the action of 
K. If V(ℤ) = V(ℚ)∩V(ℤℓ), then V(ℤ) is a lattice in V(ℚ), 
and V(ℤℓ) = V(ℤ)ℤℓ. K acts on V(ℤℓ)/ℓnV(ℤℓ) = V(ℤ/
ℓnℤ) (n  ℕ) (finite group). Let K0 be a normal open sub-
group of K acting trivially on V(ℤ/ℓnℤ). Then K/K0 acts 
on V(ℤ/ℓnℤ). And K/K0 acts also on S(K0) through mor-
phisms defined over E (if g  G(𝔸f) and g-1K'g  K, then
right multiplication by g will induce a map S(K')(ℂ) → 
S(K)(ℂ) which is the map of points in ℂ of a morphism 
S(K') → S(K) defined over E). The projection S(K0)(ℂ) 
→ S(K)(ℂ) is the map of points in ℂ of a morphism S(K0)
(ℂ) → S(K) defined over E. This morphism identifies 
S(K) with the quotient variety of S(K0) w.r.t. the action of 
K/K0. V(ℤ/ℓnℤ)K/K0S(K0) is a scheme over S(K). If we 
reduce this modulo 𝓅, then the set of points with coordi-
nates in κ defines a locally free sheaf of ℤ/ℓnℤ-modules 
over S𝓅(K)(κ) on which Gal(κ/κ) acts. If we take the limit
for n → ∞ and tensorize with ℚℓ, we get the wanted sheaf
Fξ,𝓅(K) over S𝓅(K)(κ).
   Let Φ𝓅 denote the Frobenius in Gal(κ/κ) (and also a 
Frobenius element for 𝓅 in Gal(E/E)). And let, for j  ℕ, 
κj denote Fq

j = Fp
n, where n = jr. Then S𝓅(K)(κj) is the set 

of fixed points for Φ𝓅
j on S𝓅(K)(κ), and for x  S𝓅(K)(κj) 

Φ𝓅
j will induce a linear endomorphism on the fibre of 
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Fξ,𝓅(K) over x, we denote this endomorphism by (Φ𝓅
j)x.

   The zeta function of S𝓅(K) w.r.t. ξ is now defined by

log Z(s, S𝓅(K), ξ) = Σj=1
∞ ǀω𝓅ǀjs/j Σ tr(Φ𝓅

j)x

(sum over x  S𝓅(K)(κj))

(s  ℂ, Re s >> 0, ω𝓅 is an uniformizer in E𝓅). If ξ is tri-
vial

            Σj=1
∞ ǀω𝓅ǀjs/j ǀS𝓅(K)(κj)ǀ = log Π (1 - ǀω𝓅ǀs∙deg(x))-1

(product over x  S𝓅(K))

(for Re s >>0), here ǀS𝓅(K)ǀ is the set of closed points 
(over κ) of S𝓅(K) and deg(x) = [k(x):κ]. If it was true that 
S(K) in reality was defined over 𝒪E, then ǀS𝓅(K)ǀ would 
be ǀS(K)ǀ𝓅 (the set of closed points x (over 𝒪E) of S(K) for
which the kernel of 𝒪E → k(x) is 𝓅), and we would have 
had
           Π𝓅 prime of E Z(s, S𝓅(K)) = Π x  ǀS(K)ǀ (1 – ǀk(x)ǀ-s)-1

which is the Hasse-Weil zeta function of S(K) (over 𝒪E) 
(strictly speaking the Hasse-Weil zeta function is the in-
verse of this).
   Although we will not use cohomology for the calculati-
on of Σ tr(Φ𝓅

j)x (sum over x  S𝓅(K)(κj)), we will for la-
ter remarks need a formula which expresses this term in 
terms of the action of Φ𝓅 on cohomology spaces.
   We regard S(K) as being defined over E. If p: U → 
S(K) is an étal covering of S(K), the set ζξ(K)ℤ/ℓ

n
ℤ(U, p) of

sections of the base change by p of the scheme V(ℤ/
ℓnℤ)K/K0S(K0) over S(K) has a ℤ/ℓnℤ-module structure, 
and ζξ(K)ℤ/ℓ

n
ℤ is a locally free sheaf of ℤ/ℓnℤ-modules on 

the étal topology of S(K)E. By taking limit and tensoring 
with ℚℓ we get a locally free sheaf of ℚℓ-vector spaces on 
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the étal topology of S(K)E.
   Gal(E/E) acts on the ℤ/ℓnℤ-module Hi

ét(S(K), ζξ(K)ℤ/ℓ
n
ℤ) 

(0 ≤ i ≤ 2dim S(K)), and so on the ℚℓ-vectorspace ℚℓℤℓ 

(limn→∞Hi
ét(S(K), ζξ(K)ℤ/ℓ

n
ℤ)) = Hi

ét(S(K), ζξ(K)ℚℓ). Because
our assumptions on 𝓅 the action of Gal(E𝓅/E𝓅) is unrami-
fied, the action of Φ𝓅 is well defined. By the Lefschetz fi-
xed point formula we have

                       Σ tr(Φ𝓅
j) (sum over x  S𝓅(K)(κj))

                = Σi=0
2dimS(K) (-1)i tr Φ𝓅

jǀHi
ét(S(K), ζξ(K)ℚℓ).

We could consequently have defined the zeta function of 
Sp(K) w.r.t. ξ by

Z(s, S𝓅(K), ξ)

= Πi=0
2dimS(K) det(1 - ǀω𝓅ǀs Φ𝓅ǀHi

ét(S(K), ζξ(K)ℚℓ))(-1)^(i+1)

 - the right hand side is a rational function in ǀω𝓅ǀs with co-
efficients in ℤ (and independent of ℓ), therefore the right 
hand side has meaning (see D1).
   If we choose a h  X∞, then the set

                       G(ℚ)\(∪gG(𝔸)gV(ℤ)g))/K∞K,

where gV(ℤ) = V(ℚ)∩gfV(ℤf) (g = g∞∙gf), defines a lo-
cally free sheaf of ℤ-modules over S(K)(ℂ) = G(ℚ)\
G(𝔸)/K∞K (and independent of the choice of h). If we 
tensorize this sheaf with ℤ/ℓnℤ, we get the sheaf over 
S(K)(ℂ) defined by V(ℤ/ℓnℤ)K/K0S(K0))(ℂ), and if we 
tensorize with ℚ, we get the sheaf over S(K)(ℚ) defined 
by V(ℚ)G(ℚ),ξG(𝔸)/K∞K, this sheaf of ℚ-vectorspaces 
over S(K)(ℂ) is denoted by Fξ(K).

1.2   Let ℒ, 𝒲 and 𝒟 be the gerbs (over ℚ, ℝ, and ℚp) 
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constructed in LR - thus 𝒲 is Gm(ℂ) → Wℝ → Gal(ℂ/ℝ), 
for ℒ and 𝒟 see the appendix. And let, for ℓ prime and ℚℓ 
an algebraic closure of ℚℓ, 𝐺ℓ be the trivial gerb over ℚℓ, -
that is 1 → Gal(ℚℓ/ℚℓ) → Gal(ℚℓ/ℚℓ). Let 𝐺 resp. 𝐺ab be 
the neutral gerb (over ℚ) associated to G resp. Gab = G/
Gder - thus 𝐺 is G(ℚ) → G(ℚ)Gal(ℚ/ℚ) → Gal(ℚ/ℚ).
   Let ζ∞: 𝒲∞ → ℒ, ζp: 𝒟p → ℒ and, for ℓ ≠ p, ζℓ: 𝐺ℓ → ℒ 
be the (local) homomorphisms of gerbs constructed in LR
(see appendix). In order to define ζp resp. ζℓ an imbedding
ℚ → ℚp resp. ℚ → ℚℓ is needed. The first is one for 
which the induced place of E ( ℚ) is that given by the 
chosen prime ideal 𝓅, the second is arbitrary.
   To X∞ is associated an equivalence class of homomor-
phisms ξ∞: 𝒲 → 𝐺: we define the homomorphism ξ0

∞: 𝒲
→ 𝐺E by w: Gm(ℂ) → S(ℂ) (z → (z, z)) on the kernel and 
τ → (-1, 1)ι (recall that Wℝ is generated by ℂx and a τ 
such that τ2 = -1 and τz = zτ, ι is the non-trivial element in
Gal(ℂ/ℝ)) and choose h  X∞ and let ξ∞ be the composite
𝒲 →ξ0∞ 𝐺S →h 𝐺Gℝ. It is trivial that the equivalence class 
of ξ∞ is independent of the choice of h. We choose one of 
these ξ∞.
   For each prime number ℓ we have a canonical neutra-
lization ζℓ: 𝐺ℓ → 𝐺.
   If we compose an element μ: Gm → Gℂ of  Mℂ with G 
→ Gab, then we get a coweight μab  X*(Gab) which is in-
dependent of μ. To μab we can associate a homomor-
phism ψμab : ℒ → 𝐺ab (see LR, p. 144 or appendix).
   A homomorphism φ: ℒ → 𝐺 is called permissible if

   l) ℒ →φ 𝐺 → 𝐺ab is equivalent to ψμab (global condition)

   2) φ◦ζ∞ is equivalent to ξ∞ (local condition at ∞)
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   3) the set Xp constructed below is not empty
                                                       (local condition at p)
   4) for ℓ ≠ p (and for an arbitrary imbedding ℚ → ℚℓ) is 
φ◦ζℓ equivalent to ξℓ (local condition at ℓ ≠ p).
   Let φ: ℒ → 𝐺 be an arbitrary homomorphism. We assu-
me in the rest of this paper that E is unramified at p. Let 
ℚp

un be a maximal unramified extension of ℚp in ℚp con-
taining E𝓅. ξp = φ◦ζp: 𝒟 → 𝐺 factorizes through 𝒟 → 𝒟L 
for some unramified extension L of ℚp (in ℚp

un) (LR, p. 
120). Thus we have a homomorphism of gerbs for some 
finite Galois extension L1 of ℚp:

            L1
      →      𝒟L

L1        →         Gal(L1/ℚp)
              ↓                    ↓ξp                            ↓

G(L1) → G(L1)Gal(L1/ℚp) → Gal(L1/ℚp). 

As shown in LR, p. 167, we can, by enlarging L and re-
placing ξp by an equivalent, say ξp' = ad(v)◦ξp for v  
G(ℚp), assume that L1 = L, so that we have a homomor-
phim of gerbs:

                L      →      WL/ℚp     →     Gal(L/ℚp)
                 ↓                  ↓ξp'                         ↓
              G(L) → G(L)Gal(L/ℚp) → Gal(L/ℚp),

for some unramified extension L of ℚp.
   Let κ denote the completion of ℚp

un. ξp' determines a ho-
momorphism ξ: WL/ℚp → G(κ)Gal(ℚp

un/ℚp) (via the ca-
nonical homomorphism WL/ℚp → Gal(L/ℚp)). Choose a w 
 WL/ℚp which is mapped to the Frobenius σ of Gal(ℚp

un/
ℚp) and define F  G(κ)Gal(ℚp

un/ℚp) and b  G(κ) by F 
= bσ = ξ(w). G(κ)Gal(ℚp

un/ℚp) acts on the Tits building
B(G, κ).
   We assume now that K has the form K = Kp∙Kp, where 
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Kp is hyperspecial, that is, the stabilizer in G(ℚp) of a hy-
perspecial point x0 of B(G, κ) (see Ti). Then Gℚp is split 
over some unramified extension of ℚp, we assume that 
Gℚp is quasi-split. Kp is the set of points with coordinates 
in ℤp of a scheme defined over ℤp, this scheme is also de-
noted Kp. If we base change with ℤp → ℚp, we get Gℚp. Kp

is as usual a compact open subgroup of G(𝔸p
f).

   Let χ denote G(κ)·x0, and let Xp denote {x  χ ǀ inv(x, 
Fx)) = M𝓅}, here inv is defined by 

{G(κ) orbits in χχ} ↔ Kp(Oκ)\G(κ)/Kp(Oκ)
↔ X*(S)/Ω(G(κ), S(κ)) ↔ ℳ(κ),

where S is a maximal κ-split torus of Gκ, and M𝓅 is the 
class in ℳ(E𝓅) corresponding to Mℚ in ℳ(ℚp) (Mℚ is 
fixed by Gal(ℚ/E𝓅) - for all this, see K4). As mentioned, 
Xp shall be nonempty in order for φ to be permissible.
   Let φ: ℒ → 𝐺 be permissible. We introduce the notati-
on:

   Xℓ = {x  G(ℚℓ) ǀ φ◦ζ = ad(x)◦ξℓ} for ℓ ≠ p
   Xp = Πℓ≠p Xℓ (restricted product, see LR p. 168)
   Iφ = {g  G(ℚp) ǀ ad(g)◦φ = φ}
   Jφ = {g  G(ℚp) ǀ ad(g)◦ξp = ξp}
   Jφ' = {g  G(κ) ǀ ad(g)◦ξp' = ξp'}

G(ℚℓ) acts simply transitively on Xℓ (from right), there-
fore G(𝔸p

f) acts simply transitively on Xp. Iφ acts on Xℓ 
(from left) and so on Xp. ad(v) induces a bijection Jφ ↔ 
Jφ'. Jφ', and therefore also Jφ, acts on Xp (from left), and 
because Iφ   Jφ, Iφ acts on Xp. Let Xφ(K) denote the set Iφ\
(XpXp/Kp), this set is non-empty because φ is permissib-
le.
   Let Φ = Φ𝓅 denote the element Fr in G(κ)Gal(ℚp

un/ℚp) 
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(recall that r = [E𝓅:ℚp]). Then Φ acts on Xp and therefore 
also on Xφ(K).
   We assume that

                           S𝓅(K)(κ) = ⊔{φ}Xφ(K),

where the disjoint union is taken over all equivalence 
classes of permissible homomorphisms φ: ℒ → 𝐺, and we
assume that the action of the Frobenius on S𝓅(K)(κ) cor-
responds to the action of Φ on Xφ(K) (see 3.1).
   For ε  Iφ and j  ℕ we introduce the notation:

   Yj
p = {x  Xp ǀ ε'x = Φjx}

   Yp = {yKp  Xp/Kp ǀ y-1εy  Kp},

here ε' for ε  Iφ denotes the element ad(v)(ε) ( Jφ'). We 
have an action of (Iφ)ε on Yj

pxYp (via (Iφ)ε  (Jφ)ε and 
ad(v): (Jφ)ε ↔ (Jφ')ε'). The set (Iφ)ε\(Yp

jYp) is finite.
   Let ~K be the equivalence relation "conjugation mo-
dulo Z(ℚ)K" on Iφ (Z(ℚ)K = Z(ℚ)∩K). Then we have a 
map

Xφ(K)Φj → Iφ/~K,

given by: if {(xp, xp)}  Xφ(K)Φj, then ε'xp = Φjxp and εxp 
= xp for some ε  Iφ, let {(xp, xp)} maps to {ε}.
   We can choose Kp so small that

   1) if ε  Iφ has a fixed point in Xp(Xp/Kp), then ε  
Z(ℚ)K

   2) if ε, ε  Iφ and z  Z(ℚ)K and ε-1εε = εz, then z = 1.

Then for ε  Iφ, the inverse image of {ε} by the above 
map is (Iφ)ε\(Yj

pYp).
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1.3   Let φ: ℒ → 𝐺 be permissible, let ε  Iφ, and let j  
ℕ, then, if (Iφ)ε\(Yj

pYp) is non-empty:

   l) ∃x  G(κ)∙x0: ε'x = Φjx

   2) ∃y  Xp: y-1εy  G(𝔸p
f)

   We will call the pair (φ, ε) j-permissible if these two 
conditions are satisfied. If φ = ad(g)◦φ and ε = gε resp.  
gε∙z for g  G(ℚ) and z  Z(ℚ)K, then (φ, ε) is also j-
permissible - in this case (φ, ε) and (φ, ε) are called equi-
valent resp. K-equivalent.
   For n  ℕ, let Fn be the extension of ℚp in ℚp

un of de-
gree n.
   Because of 1) ε'-1Φj has a fixed point in G(κ)∙x0, there-
fore there exists a c  G(κ) such that c(ε'-1Φj)c-1 = σn (K4, 
p. 291). Define δ  G(κ) by  δ = cbσ(c)-1 (recall that Φ = 
(bσ)r), then δ  G(Fn) (n = jr) and NmFn/ℚpδ = cε'c-1. The
σ-conjugacy class of δ in G(Fn) is determined by the 
equivalence class of (φ, ε).
   Because of 2) γ = y-1εy belongs to G(𝔸p

f). The conjuga-
cy class of γ in G(𝔸p

f) is determined by the equivalence 
class of (φ, ε).
   For n = jr, let f𝓅,n  ℋ(G(Fn), Kp(𝒪Fn)) be meas 
(Kp(𝒪Fn)/(ZK)p)-1 ∙ the characteristic function of the coset 
in Kp(𝒪Fn)\G(Fn)/Kp(𝒪Fn) corresponding to M𝓅  ℋ(Fn) 
((ZK)p = Z(ℚp)∩Kp). Let φp  ℋ(G(𝔸p

f), Kp) be meas(Kp/ 
(ZK)p)-1 ∙ the characteristic function of Kp ((ZK)p = Z(𝔸p

f) 
∩Kp).
   Let Gσ

δ(ℚp) denote the σ-centralizer of δ in G(Fn), that 
is, {g  G(Fn) ǀ g-1δσ(g) = δ}, this subgroup is defined 
over ℚp (if G~ = ResFn

/ℚpG and θ is the ℚp-automorphism 
of G~ corresponding to the action of σ on G(Fn) = 
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G~(ℚp), then Gσ
δ is the set of fixed points of ad(δ)◦θ).

   The following computation of ǀ(Iφ)ε\(Yj
pYp)ǀ is the prin-

cipal idea of K4.
   We have bijections

Yj
p ↔ {gpKp(𝒪Fn)  G(Fn)/Kp(𝒪Fn) ǀ f~𝓅,n((gp)-1δσ(gp) ≠ 0}

(gpx0 → cgpKp(𝒪Fn))

and
Yp ↔ {gpKp  G(𝔸p

f)/Kp ǀ φp((gp)-1γgp) ≠ 0}
(ygpKp ← gpKp).

With the use of these we get

      ǀ(Iφ)ε\(Yj
pYp)ǀ

   = meas(Kp(𝒪Fn)/(ZK)p)∙meas(Kp/(ZK)p)
                Σ f~𝓅,n((gp)-1δσ(gp)) φp((gp)-1γgp)
      (sum: {(gp, gp)}  (Iφ)ε\(G(Fn)G(𝔸p

f))/Kp(𝒪Fn)Kp)
    = ∫ f~𝓅,n((gp)-1δσ(gp)) φp((gp)-1γgp) dgpdgp/dh
       (integral: (Iφ)εZK\(G(Fn)G(𝔸p

f)))

   = meas((Iφ)εZK\(Gσ
δ(ℚp)Gγ(𝔸f

p)))∙TO(δ, f~𝓅, n)∙O(γ, φp).

   Here (Iφ)ε acts on G(Fn) and G(𝔸p
f) via the imbeddings 

ad(cv): (Iφ)ε → Gσ
δ(ℚp) and ad(y-1): (Iφ)ε → Gγ(𝔸p

f), we 
identify (Iφ)ε with its image in G(Fn)G(𝔸p

f). (Iφ)εZK is 
closed in G(Fn)G(𝔸f

p), and the intersection of (Iφ)εZK 
with any conjugate of Kp(𝒪Fn)∙Kp is equal to ZK (this fol-
lows from condition 1) of Kp in l.2). TO(δ, f) is the twis-
ted orbital integral of the function f on G(Fn) at δ  
G(Fn), and O(γ, φ) is the orbital integral of the function φ
on G(𝔸f

p) at γ  G(𝔸p
f). The measures on G(Fn), G(𝔸f

p)
and (Iφ)εZK are arbitrary, and the measures on the compact
open subgroups resp. Kp(𝒪Fn), Kp and ZK are the restricti-

20



ons, the measures on Gσ
δ(ℚp) and Gγ(𝔸p

f) are also arbitra-
ry.

1.4   Let LG0 denote the connected L-group of G. It is pro-
vided with a Cartan subgroup LT0, a Borel subgroup LB0, 
an action of Gal(ℚ/ℚ) leaving these subgroups invariant, 
and for a Cartan subgroup T of G we can choose an iso-
morphism X*(T) ↔ X*(LT0) (determined up to compositi-
on with a Weyl-group action). Let Z denote the center of 
LG0. Z is connected because Gder is simply connected.
   The class Mℂ determines a Weyl-group orbit Ωμ in X* 

(LT0). The restrictions of the characters in Ωμ to Z is one 
and the same character and is denoted by μ2.
   Recall that G is assumed to be unramified over ℚp, that 
is, quasi-split over ℚp and split over some unramified ex-
tension of ℚp.
   Let, for ε  G(ℚp)s.s. (s.s. = semi-simple), Mε denotes 
the centralizer in Gℚp of the maximal ℚp-split torus in the 
center of (Gℚp)ε.
   Let, for j  ℕ, G(ℚp)n (n = jr) denote the set of elements
ε in G(ℚp)s.s. such that:
    there exists a Cartan subgroup T of Mε and a μ  X*(T)
such that:
   1) μ is defined over Fn
   2) the class in ℳ(Fn) containing μ is M𝓅

   3) if ZMε is the center of the connected L-group LM0
ε of 

Mε, and if µ1  X*(ZMε) is the restriction of µ (via the Car-
tan subgroup LT0

Mε and an isomorphism X*(T) ↔ X(LM0
ε) 

used in the construction of LM0
ε), then NmFn

/ℚpµ1 is the 
image of ε by the map λ: Mε(ℚp) → X*(Z)Gal(ℚp/ℚp) con-
structed in K4, p. 298 (Mε is split over an unramified ex-
tension of ℚp since Gℚp is).
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   In G resp. Gℚν (ν place) stable conjugacy is the same as 
G(ℚ)- resp. G(ℚν)-conjugacy (because Gder is simply con-
nected).
   If ε  G(ℚp)n and ε'  G(ℚp) is stably conjugate to ε 
(modulo Z(K)p), then ε'  G(ℚp)n (LR, Lemma 5.17).
   Let G(ℚ)n

∞ denote {g  G(ℚp)s.s. ǀ g  G(ℚp)n and g is 
elliptic at infinity}.
   Let ~K denote the equivalence relation "G(ℚ)-conjuga-
tion modulo Z(ℚ)K" on G(ℚ).
   If ε  G(ℚ)n

∞ and ε'  G(ℚ) and ε ~K ε' (that is, ε' and ε
are stably conjugate modulo Z(ℚ)K), then ε'  G(ℚ)n

∞.
   We now assume that the Hasse princip is true for Gder 
(this is true if Gder has no E8 factor). Then if (φ, ε) is a j-
permissible pair, there exists a ε'  G(ℚ) such that ε ~K ε',
and such a ε' belongs to G(ℚ)n

∞, and, conversely, if ε'  
G(ℚ)n

∞, there exists a j-permissible pair (φ, ε) such that ε 
~K ε' (LR, Satz 5.21).

1.5   Let, for ε  G(ℚ)n
∞, Pε denote the set of Gε -equiva-

lence classes of permissible homomorphisms φ: ℒ → 𝐺 
such that (φ, ε) is j-permissible. Then Pε ≠ Ø and every j-
permissible pair (φ, ε) is equivalent to a pair (φ, ε), where
ε  G(ℚ)n

∞ and φ  Pε.
   For ε  G(ℚ)n

∞ there exists a ε  G(ℚ)n
∞ such that ε ~K 

ε, and such that for φ  Pε the following condition is sa-
tisfied: if L ( ℚ) is a Galois extension of ℚ and m  ℕ, 
both chosen so large that φ factorizes through ℒ L

m, then 
φ(δm)  G(ℚ) for m divisible by m and sufficiently large 
(for the notation see appendix). Such a ε is called favou-
rable. In fact, if ε is favourable, then for every φ  Pε, the
restriction of φ to the kernel of ℒ is independent of φ and 
it maps into the center of Gε (LR p. l90 and p. 194). We 
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choose a set of favourable representatives in the ~K-equ-
vivalence classes of G(ℚ)n

∞, thus every j-permissible pair 
(φ, ε) is K-equivalent to a j-permisible pair (φ, ε) where ε 
is a such representative, and φ  Pε.
   For φ  Pε (ε favourable), let ℐ denote Gφ(δm) (m suffi-
ciently large - ℐ is independent af m because Gder is simp-
ly connected), let ℐφ denote the inner twisting of ℐ by φ (if
φ(tδ) = sσ σ (sσ  Gε(ℚ), σ  Gal(ℚ/ℚ) then σ → ad(sσ) is
a cocycle in Aut(ℐ(ℚ)) because φ(Q(L, m))  center ℐ), 
and also let ℑ denote the centralizer in Gℚp of the image of
the kernel of 𝒟 by ξp = φ◦ζp, and let ℑφ denote the inner 
twisting of ℑ by ξp. Then ℐφ(ℚ) = Iφ and  ℑφ(ℚp) = Jφ, and  
ℐℚp  ℑ and (ℐφ)ℚp  ℑφ. Moreover Gε  ℑ, and if (Gε)φ de-
note the inner twisting of Gε by φ, then (Gε)φ  ℑφ. (ℑφ)ℝ 
(and ((Gε)φ)ℝ) is independent of φ  Pε, in fact, ξ∞ (see 
1.2) defines an inner twisting Gℝ' of Gℝ (because it maps 
the kernel of 𝒲 into the center of G), Z(ℝ)\Gℝ'(ℝ) is 
compact (LR p. 165) and (ℑφ)ℝ (and (Gε)φ)ℝ) is a sub-
group af Gℝ'.
   For φ  Pε, let v  G(ℚp), c  G(κ), δ  G(Fn), y  
G(𝔸p

f)  and γ  G(𝔸p
f) be as in 1.3. Then we have an 

isomorphism ((ℑφ)ε)(ℚp) ↔ Gσ
δ(ℚp) given by ad(cv), and 

an isomorphism (Gε)φ(𝔸p
f) ↔ Gγ(𝔸p

f) given by ad(y-1). 
Therefore we have

      meas((Iφ)εZK\(Gσ
δ(ℚp)G(𝔸p

f))
   = meas((ℑφ)ε(ℚ)ZK\(ℑφ)ε(𝔸f))
   = meas((Gε)φ(ℚ)ZK\(Gε)φ(𝔸f))
   (because ((ℑφ)ε)ℚp = (ℑφ)ε - see K4).

   For a reductive connected algebraic group G, the sign 
c(G) is defined in K2. We introduce the following abbre-
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viations
   c∞ = c(((Gε)φ)ℝ) = c(((Gε)ℝ'))
   cp = c(((Gε)φ))ℚp) = c(Gσ

δ)
   cp = c(((Gε)φ))𝔸p

f) = c(Gγ),
then c∞cpcp = 1.

1.6   We choose a measure on Z(ℝ), and for each ε  G 
(ℝ)e (e = elliptic) we choose a measure on Gε(ℝ) such that
if ε' and ε are stably conjugate (and therefore Gε' is an in-
ner form of Gε) the measures on Gε'(ℝ) and Gε(ℝ) are 
compatible. Then we have a measure on Gε'(ℝ) for each ε 
 G(ℝ)e (recall that Z(ℝ)\Gε'(ℝ) is compact).
   We define a function α: G(ℝ) → ℝ by

                 α(ε) =  c(Gε') tr ξ(ε)/meas(Z(ℝ)\Gε'(ℝ))
                   if ε  G(ℝ)e and 0 if ε  G(ℝ)\G(ℝ)e.

   Let, for a reductive ℚ-group G in whose center the cen-
ter Z of G can be canonically imbedded, and for which G 

ℝ has an inner form Gℝ' such that Z(ℝ)\Gε'(ℝ) is compact, 
τ(G)K denote meas(G(ℚ)Z(ℝ)ZK\G(𝔸)). Then we have 
for ε  G(ℚ)n

∞ and φ  Pε:

   τ(G)K = meas(Z(ℝ)\(Gε)ℝ'(ℝ))
               ∙meas((Gε)φ(ℚ)ZK\(Gε)φ(𝔸f))
(recall that the measure on (Gε)φ(𝔸f) is defined by the 
isomorphism (Gε)φ(𝔸f) ↔ (Gσ

δ)(ℚp)Gγ(𝔸p
f)).

1.7   In this section we let Γ and Γν (ν place) denote resp. 
Gal(ℚ/ℚ) and Gal(ℚν/ℚν).
   If G is a connected reductive ℚp-group, we denote by 
B(G) the group G(κ)/~, where ~ is the equivalence re-
lation "σ-conjugation" (that is, g' ~ g''  ∃g  G(κ): g' =
gg''σ(g)-1 (σ the Frobenius of Gal(κ/ℚp)), and by B(G)b the
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subgroup of basic elements (see K5). Then we have an 
isomorphism B(G)b ↔ X*(ZΓp), where Z is the center of 
the connected L-group of G, and a homomorphism B(G)b 
→ X*(Z)Γpℚ with kernel H1(ℚp, G) = π0(ZΓp)D.
   For j  ℕ and ε  G(ℚp)n we introduce the notation:

   Ψn
ε = {δ  G(Fn) ǀ ∃c  G(κ): NmFn

/ℚpδ = cεc-1  δ is 
mapped by G(κ) → Gab(κ) → B(Gab) → X*(ZΓp) to the 
restriction of μ2  X*(Z)}/~,

   Φn
ε = {b  Gε(κ) ǀ ∃c  G(κ): NmFn

/ℚpb = ε(c-1σn(c))  b 
is mapped by G(κ) → Gab(κ) → B(Gab) → X*(ZΓp) to the 
restriction of μ2  X*(Z)}/~

and, if b0  Φn
ε, then a conjugation on Gε(κ) is defined by 

g → σ'(g) =b0σ(g)b0
-1 (because NmFm

/ℚpb0  center Gε(κ) 
for m suffenciently large), and we let

   Φε' = {a  Gε (κ) ǀ ∃n'  ℕ, b  Gε(κ): Nm'Fn'
/ℚpa =       

b-1σ'n'(b)  a is mapped by G(κ) → Gab(κ) → B(Gab) to the
identity}/~'
(here Nm' is the norm associated to σ' and ~ resp. ~' is 
the equivalence relation "σ-conjugation" resp. "σ'-conju-
gation").
   Let Gε' denote the inner twisting of Gε determined by σ',
let maps
   φ: B(Gε)b → X*(Zε)Γpℚ
and
   φ': B(Gε')b → X*(Zε)Γpℚ
be as above (Zε is the center of the connected L-group of 
Gε and Gε'), and let
   ψ: B(Gε)b →  B(Gab)
and
   ψ': B(Gε')b →  B(Gab)
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be the projections. Then we have
   Ψε' = φ'-1(0)∩ψ'-1(0) = ker(H1(ℚp, Gε') → H1(ℚp, Gab))
and
   Ψn

ε = φ-1(τ/n)∩ψ-1(μ2ǀZΓp) 
where τ = λ(ε)ǀ(ZMε)Γp (see 1.4), we have used that X* 
(ZMε

Γp)ℚ = X*(Zε)Γpℚ and B(Gab) = X*(ZΓp).
   We have a bijection

Φε' ↔ Φn
ε

given by a → ab0, and a bijection
Φn

ε ↔ Ψn
ε

given by b → cbσ(c)-1. We identify Φn
ε and Ψn

ε.
   For ε  G(ℚp)n we construct an element bε  Φn

ε in the 
following way: we choose an elliptic Cartan subgroup T 
of Gε, and a coweight μ  X*(T) which is Mε -conjugate to
a μ satisfying the condition in 1.4, then the homomor-
phism ξ-μ: 𝒟 → T(ℚp)Γp (see LR or appendix) is basic 
for Gε, that is, if we by the procedure of 1.2 construct a 
homomorphism ξ: WL/ℚp → T(κ)Gal(ℚp

un/ℚp) for some 
unramified extension L of ℚp (in κ) and let ξ(w) = bσ, 
then b is basic in Gε(κ) (because T is elliptic in Gε), and 
we take bε = {b}. The element in X*((Zε)Γp) correspon-
ding to bε is μǀ(Zε)Γp (we have chosen an identification 
X*(T) ↔ X* (LT0

Gε)), bε can also be constructed as fol-
lows: choose (T, μ) as above, then we can choose a κ-split
Cartan subgroup T' of Mε such that the image of T' in 
(Mε)ad is anisotropic and a μ  X*(T') such that μ' is Mε-
conjugate to μ, and now the homomorphism ξ-μ': 𝒟 → 
T'(ℚp)Γp already has the wanted form (that is, it comes 
from a homomorphism ξ-μ: WL/ℚp → T'(L)Gal(ℚp

un/ℚp), 
where L splits T'), therefore the corresponding  "b" is 
simply μ'(p) ( T'(L)), and because ξ-μ and ξ-μ' are Mε-
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conjugate, that is ξ-μ' = ad(u)◦ξ-μ for some u  Mε(ℚp) (see 
LR, p. 172), we have b = u'-1μ'(p)σ(u')  Gε(κ) if we write
u = u'v for u'  Mε(ℚp

un) and v  Gε(ℚp).
   The last (by 3.2) and the last but one (obvious) equation
of this paragraph are independent of the choice of bε, (i.e. 
of (T, μ)).
   For ρ  ℰ(Gε/ℚp) we have a bijection

θρ: Φn
ε ↔ Φn

ρε

given by {b} → {gbσ(b)-1} if ρ is given by σ → g-1σ(g) 
( Gε(ℚp), σ  Γp), and g is chosen in G(ℚp

un). And if we 
choose a pair (T, μ) as above, we have a bijection

h: ℰ(Gε/ℚp) ↔ Φn
ε

given by ρ → (θρ)-1(bρε), here bρε is defined by (gT, gμ) (g 
 G(ℚp)) chosen such that ρ = {g-1σ(g)}  ℰ(T/ℚp), it is 
possible because T is elliptic in Gε). We have h({g-1σ(g)})
= {bg-1σ(g)} if bε = {b}.
   Let ε  G(ℚ)n

∞ and assume that ε is favourable. Choose
φ0  Pε. Then φ0 determines a b0  Φn

ε and a γ0  G(𝔸pf) 
(see 1.3) and a twisted form Gε' of Gε .
   Let K(Gε/ℚ) denote the set of elements π0((Zε/Z)Γ) for 
which the associated element in H1(ℚ, Z) is locally trivial.
K(Gε/ℚ) is a group, and if we let X denote the group 
(π0((Zε /Z)Γ))D and, for every place ν, let Xν denote the 
subgroup obtained by restricting to π0((Zε/Z)Γ), the kernel 
of π0((Zε/Z)Γν)D → π0(ZΓν

ε)D, then

              K(Gε /ℚ)D = X/ Πν Xν.

   Because ℰ(Gε, ℚν) (ν place) is the kernel of (π0(ZΓν
ε))D 

→ (π0(ZΓν))D, we easily see that we have a natural homo-
morphism

              ℰ(Gε/ℚν) → K(Gε /ℚ)D.
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   We can also construct a map

Φn
ε → K(Gε/ℚ)D

in the following way: choose a Cartan subgroup T of Gε 
which is elliptic in G(ℝ) and a h  X∞ which factorizes 
through T (ε is elliptic in G(ℝ)), then the restriction of μh 
to (Zε)Γ∞ is independent of the choices (LR, p. 184, Zε can 
be canonically imbedded in LT0, and we have identified 
X*(T) and X*(LT0)), and the restriction of µh to ZΓ∞ is μ2ǀ 
ZΓ∞, therefore we can construct a character λ∞ of ker(Zε →
(Zε/Z)Γ∞) whose restriction to (Zε)Γ∞ is μhǀ(Zε)Γ∞ and whose
restriction to Z is μ2, furthermore, if b  Φn

ε, then because
Φn

ε  B(Gε)b, a character μb of (Zε)Γp is attached to b, and 
the restriction of μb to ZΓp is μ2ǀZΓ∞, therefore we can con-
struct a character λp of ker(Zε → (Zε/Z)Γp) whose restricti-
on to ZΓp

ε is μb and whose restriction to Z is μ2. Now, if λ∞'
and λp' are the restrictions of λ∞ and λp to ker(Zε → (Zε/ 
Z)Γ), then λp'∙(λ∞')-1 is a character of (Zε/Z)Γ, and this is tri-
vial on the identity component, thus we have a character 
in π0(Zε/Z)Γ) and so an element of K(Gε /ℚ)D - this element
is independent of the choices.
   We consequently have a map

β: Φn
εℰ(Gε, 𝔸pf) → K(Gε /ℚ)D.

Also, we have a commutative diagram

                                    (a, ρ)         →     (ab0, ρρ0)
                           Φε'ℰ(Gγ0, 𝔸pf) ↔ Φn

εℰ(Gε /ℚ)D

                                                 ↑                       ↑A
   ker(H1(ℚ, Gε') → (H1(ℚ, Gab)H1(ℝ, Gε')) ↔ Pε,

the lower map maps the cocycle c: Γ → Gε'(ℚ) to its pro-
duct with φ0 ( Pε), it is a bijection (LR, Lemma 5,26), 
the vertical maps are resp. the natural map and the map A 
given by φ → (δ, γ) (see 1.3, recall that we have identi-
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fied Ψn
ε and Φn

ε).
   If we choose a Cartan subgroup T of Gε (elliptic in G(ℝ)
and in Gε(ℚp)), an h  X∞ which factorizes through T and 
a μ  X*(T) which is Mε-conjugate to a μ satisfying the 
condition in 1.4, then μ - μh determines an element in 
ℰ(T/ℝ) (via the Tate-Nakayama isomorphism), and β(bε) 
is equal to the image of that element in K(Gε /ℚ)D.
   For κ  K(Gε/ℚ) define Gκ: Ψn

εℰ(Gε, 𝔸pf) → ℂ by

Gκ(δ, ρ) = κ(β(δ, ρ))∙c(Gσ
δ)∙TO(δ, f~

,n𝓅 )∙c(Gδε)∙O(δε, φp).

Then we have for φ  Pε

Gκ(A(φ)) = c(Gσ
δ)∙TO(δ, f~

,n𝓅 )∙c(Gγ)∙O(γ, φp)

(if A(φ) = (δ, ρ)) for any κ  K(Gε /ℚ), and

Σ Gκ(δ, ρ) (sum over κ  K(Gε /ℚ)) = 0 for (δ, ρ)  A(Pε)
(LR, Satz 5.25).
   The number of elements in Pε which by A are mapped to
a given element in the image is always

i(ε) = ǀker(H1(ℚ, Gε) → H1(ℚ, Gab)H1(𝔸, Gε))ǀ

- i(ε') = i(ε) if ε ~K ε' (LR, p. 193).
   Now we can rewrite (6)

   Σ c(Gσ
δ)∙TO(δ, f~

,n𝓅 )∙c(Gγ)∙O(γ, φp) (sum over φ  Pε)

     = i(ε)∙ǀK(Gε /ℚ)ǀ-1 Σ Σ Gκ(δ, ρ)
     (sum over κ  K(Gε /ℚ), (δ, ρ)  Ψn

εℰ(Gε, 𝔸pf))
      = i(ε)∙ǀK(Gε /ℚ)ǀ-1 Σ κ∞(μ – μh)
               ∙(Σ κp(ρ)∙c(Gσ

δ)∙TO(δ, f~
,n𝓅 ))

               ∙(Σ κp(ρ)∙c(Gδε)∙O(δε, φp)) (δ = κ(ρ))

(sum over κ  K(Gε /ℚ), ρ  ℰ(Gε, ℚp), ρ  ℰ(Gε, 𝔸pf))
      = i(ε)∙ǀK(Gε /ℚ)ǀ-1 Σ κ∞(μ – μh)
               ∙(Σ κp(ρ)∙c(Gρε)∙O(ρε, f~

,n𝓅 ))
29



               ∙(Σ κp(ρ)∙c(Gρε)∙O(ρε, φp)),

κ∞, κp and κp are defined by ℰ(Gε, ℚν) → K(Gε/ℚ)D, and 
f ,n𝓅  is the image of f~

,n𝓅  by the base-change homomor-
phism ℋ(G(Fn), Kp(𝒪Fn)) → ℋ(G(ℚp), Kp) (see 3.2), we 
have used 3.2 and that for ρ  ℰ(Gε, ℚp) is β(h(ρ)) =  
β(bε) ∙ the image of ρ by ℰ(Gε, ℚν) → K(Gε /ℚ)D.

1.8  A subscript e will denote "elliptic".
   Let ℰ denote  the set of (equivalence classes of) ellip-
tic endoscopic data (H, s, η) for G (K3, thus H is a con-
nected reductive quasi-split group defined over ℚ, η is an 
imbedding of the connected L-group LH0 of H into HG0, s 
belongs to the center ZH of LH0, and the image of η is the 
connected component of the centralizer of η(s) in LG0).
   We have a bijection between the set of (equivalence 
classes of ) pairs ((H, s, η), γ), where γ  H(ℚ)e,(G, H)-reg, 
and the set of (equivalence classes of) pairs (ε, κ), where 
ε  G(ℚ)e and κ  K(Gε /ℚ) (K6, thus γ is "the image" of 
ε (see below), and since Hγ is an inner form of Gε, their 
connected L-groups are isomorphic, and so ZH can be ca-
nonically imbedded in Zε, and κ is the element of π0((Zε 

/Z)Γ) containing s  ZH  Zε).
   For each (H, s, η)  ℰ we choose, once and for all, a 
continuous extension η': LH0Lℚ → LG0Lℚ of η which 
commutes with the projections on Lℚ (L is the Langlands 
group, see 3.10 - η' exists because the center Z of LG0 is 
connected). Since we have chosen an imbedding ℚ → ℚν 
for each place, we have a continuous homomorphism Lℚν 
→ Lℚ for each place (canonical up to conjugation by an 
element of Lℚ), and η' can be uniquely lifted to a continu-
ous extension ην': LH0Lℚν → LG0Lℚν of η which commu-
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tes with the projection on Lℚν.
   We choose local transfer factors Δν(γν, εν) (ν place) (see 
LS1) and assume that they satisfy the global condition Πν 
Δν(γν, εν) = 1.
   Let ℰ∞ denote the set of (equivalence classes of) endo-
scopic data (H, s, η) for G for which (Hℝ, s, η) is elliptic, 
then ℰ∞  ℰ. ε is elliptic at ∞ if and only if (H, s, η) and 
γ is elliptic at ∞.

1.9   Here we replace n by j (recall that n = jr and ǀω𝓅ǀ = 
ǀωǀr) - thus j is divisible by r.
   For each (H, s, η)  ℰ∞ we can assume that η(s)  LT0, 
and we choose, once and for all, a Cartan subgroup T0 of 
G which is elliptic at infinity, an isomorphism X*(T0) ↔ 
X* (LT0) which is such that this, the action of Gal(ℚ/ℚ) 
on X* (T0) and η(s) determine (H, s, η), and a h0  X∞ 
which factorizes through T0.
   For j  rℕ we let H(ℚ)j

∞ denote the set of elements in 
H(ℚ)s.s. which is the image of some element in G(ℚ)j

∞.
   For γ  H(ℚ)j

∞ we define the sign τ(γ) as follows: cho-
ose ε  G(ℚ)j

∞ such that γ is the image of ε, choose an 
elliptic Cartan subgroup T of G which contains ε and an 
isomorphism X*(T0) ↔ X*(LT0) arising from the relation 
between γ and ε - that is, X*(T0) ↔ X*(LT0) comes from 
the relation between G and LG0, and there is an elliptic 
Cartan subgroup TH of H which contains γ, and an iso-
morphism X*(TH

 ) ↔ X*(LTH
0 ) which comes from the 

relation between H and LH0, such that the isomorphism TH

↔ T determined by X*(TH) ↔ X*(LTH0) ↔η X*(LT0) ↔ X* 

(T) is defined over ℚ and maps γ to φ)) and choose μ  
X*(T) such that μ is Mε-conjugate to a μ satisfying the 
condition in 1.4, then take τ(γ) = (μ - μh0)(η(s)) (we have 
identified X*(T0), X*(T) and X*(LT0)). τ(γ) is independent 
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of the choices, and τ(γ) =  ±1 because η(s)2  ℤ since (H, 
s, η)ℝ is elliptic.
   Let ε0  T0(ℝ) be such that γ is the ℝ-image of ε0 (via 
the isomorphism X*(T0) ↔η X*(LT0) - ε0 is determined up 
to action of the H-Weyl-group). Then

           Δ∞(γ, ε)∙α(ε)∙κ∞(μ - μh) = Δ∞(γ, ε0)∙α(ε0)∙τ(γ)
(recall that μh  X*(T) where T  Gε (1.7)).
   There is a (finite dimensional) representation 0r𝓅 of LG0 

Gal(ℚp
un/E𝓅) (unique up to isomorphism) such that it is 

irreducible on LG0 having extreme LT0-weights Ωμ and 
such that Gal(ℚp

un/E𝓅) acts trivially on the LB0-highest 
weight space (K4). By restriction we have a representa-
tion 0r𝓅,j of LG0Gal(ℚp

un/Fj).
   The function f~

𝓅,j  ℋ(G(Fj), Kp(𝒪Fj)) in l.3 is associ-
ted to the class function x → ǀωFjǀ-d/2 tr 0r𝓅,j(x) on LG0Gal 
(ℚp

un/Fj) by the Satake transform, ωFj is an uniformizati-
on element in Fj and d = 2<δ, μ> = dim S(K), here μ  
Ωμ and δ is the half sum of the positive roots for an order 
which makes μ dominant (K4).
   Let r𝓅,j denote the representation of LG0Gal(ℚp

un/ℚp) 
obtained by inducing 0r𝓅,j. Then the function f𝓅,j  ℋ 
(G(ℚp), Kp) in 1.7 is associated to the class function x → 
(1/j) ǀωjǀ-d/2 tr r𝓅,j(xj) on LG0Gal(ℚp

un/ℚp) by the Satake 
transform.
   Because Gℚp is unramified, and the (H, s, η) that contri-
bute to our sum are such that Hℚp is unramified (see be-
low) we can assume that ηp' is unramified (ηp' differs from
such by an element of H1(Wℚp, ZH), this determines a cha-
racter χ on H(ℚp), and Hf𝓅,j (see below) and Δp have to be 
multiplied by χ), that is, the lifting of a homomorphism 
ηp: LH0Gal(ℚp

un/ℚp) → LG0Gal(ℚp
un/ℚp).
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   Let 0rH
𝓅,j denote the restriction of 0r𝓅,j to LH0 Gal(ℚp

un/ Fj) (via ηp). On the Cartan subgroup LTH0 = η-1(T) of  LH0, 
0rH

𝓅,j acts in accordance with Ωμ (regarded as a Ω(LG0, 
LT0)-orbit in X*(LTH

0). The set

ℋ = {(μ - μh0)(η(s)) ǀ μ  Ωμ}  {±1}

determines a class decomposition of Ωμ, and so a decom-
position of the representation space of 0rH

𝓅,j , this decom-
position respects the action of LH0Gal(ℚp

un/Fj), and so 
we have a decomposition

0rH
𝓅,j =  iℋ

 0r˅H,i
𝓅,j.

Because the restriction rH
𝓅,j of r𝓅,j to LH0Gal(ℚp

un/ℚp) is 
obtained by inducing 0rH

𝓅,j to LH0Gal(ℚp
un/ℚp), we have 

also a decomposition

rH
𝓅,j =  iℋ

 r˅H,i
𝓅,j.

   Let φ  ℋ(G(𝔸f), K) be meas(K/ZK)-1 ∙ the characte-
ristic function of K, and φp  ℋ(G(ℚp), Kp) be meas (Kp/ 
(ZK)p)-1 ∙ the characteristic function of Kp. Then φ(gp, gp) =
φp(gp)φp(gp).
   For each (H, s, η)  ℰ that contributes to our sum, Hℚp 
is unramified, therefore we can choose a hyperspecial 
subgroup KH

p of H(ℚp) such that every γ  KH
p is the ima-

ge of some ε  Kp, and there exists a function φH on 
H(𝔸f) such that φH  ℋ(H(ℚp), KH

p), and such that if γ 
H(𝔸f)s.s.,(G,H)-reg, then

            SOf(γ, φH) = Δf(γ, ε) Σ κf(ρ)∙c(Gρε)∙Of(ρε, φ)
                                          (sum over ρ  ℰ(Gε/𝔸f))

if γ is image of ε  G(𝔸f)s.s. and 0 if not

(see 3.5 and 3.7). Let the function fH
,j𝓅   ℋ(H(ℚp), KH

p) 
be associated to the class function x → (1/j) ǀωjǀ-d/2 Σiℋ i tr
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˅rH,i
,j𝓅  on LH0Gal(ℚp

un/ℚp) by the Satake transform. Then 
it follows from 3.5 that if γ  H(ℚ)j

∞ and ε  G(ℚ)j
∞ and 

γ is the image of ε, then

SOp(γ, fH
,j𝓅 *φH) = τ(γ)∙Δp(γ, ε) Σ κp(ρ)∙c(Gρε)∙Op(ρε, f ,j 𝓅 )

(sum over ρ  ℰ(Gε/ℚp)).

Furthermore it follows from 3.4 that there exists a functi-
on fH

ξ on H(ℝ) such that

SO∞(γ, fH
ξ) = Δ∞(γ, ε)∙α(ε0)

for γ  H(ℝ)e and 0 for γ  H(ℝ)s.s.\H(ℝ)e.

In the above SOν(γ, f) (ν place) denotes the stable orbital 
integral at γ  H(ℚν) of the function f on H(ℚν), that is,

SOν(γ, f) = Σ c(Hργ)∙Oν(ργ, f) (sum over ρ  ℰ(Hγ/ℚν)).

   The number of stable conjugacy classes of elements γ 
H(ℚ)s.s.,(G, H)-reg which are the image of a given ε  G(ℚ)s.s. 
is λ(H, s, η) = ǀAut(H, s, η)/Had(ℚ)ǀ (K6). If we denote the 
number λ(H, s, η)-1∙τ(G)∙τ(H)-1 by ι(G, H) (see K3), then it
follows from 3.3 that

λ(H, s, η)-1∙i(ε)∙ǀκ(Gε/ℚ)ǀ-1∙τ(Gε)K

= ι(G, H)∙i(γ)∙ǀκ(Hε/ℚ)ǀ-1∙τ(Hγ)K.

1.10   It follows from 3.4 and 3.5 that we can extend the 
summation from ℰ∞ to ℰ and from H(ℚ)j

∞ to H(ℚ)e.
   Let κ(H, η') be the character of Z(𝔸) constructed in 
LS1 (p. 252 - in this paper, however, only on the identity 
component of Z). It is determined by η' and satisfies 
Δν(zγ, zε) = κ(H, η')ν(z)∙Δν(γ, ε) (ν place). Let νH

∞ be the 
character ν∙κ(H, η')∞ of Z(ℝ), and let ιH

f be the character 
κ(H, η')ǀZK of ZK.
   We let FH

,j𝓅  denote the function on H(𝔸) defined by 
FH

,j𝓅 (h) = f H
ξ(h∞)∙r(FH

,j𝓅 *φH
p)(hp)∙φHp(hp). For z  Z(ℝ) we
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have FH
,j𝓅 (zh) = νH

∞(z)∙FH
,j𝓅 (h), and for z  ZK we have 

FH
,j𝓅 (zh) = ιH

f(z)∙FH
,j𝓅 (h).

   Σ ... (sum over γ  H(ℚ)e/~K) is the stable elliptic part 
of the trace of FH

,j𝓅  (see L8 or K6).
   Let Φ(H)e denote the set of (equivalence classes of) 
elliptic (essentially) tempered admissible homomor-
phisms ψ: Lℚ → LH0Lℚ such that χψ∞ǀZ(ℝ) = (νH

∞)-1 and 
χψfǀZK = (ιH

f)-1 (χψν is the character of ZH(ℚν) accociated to 
ψν  Φ(Hν)), then the stable tempered cuspital part of the 
trace is

           Σ dψ
-1 Σ nπ tr π(FH

,j𝓅 ) (ψ  Φ(H)e, π  Π(ψ)),

here dψ is the number of (global) equivalence classes in 
the local equivalence class of ψ (dψ different classes of 
Φ(H)e parametrize Π(ψ)), nπ is the stable multiplicity of π,
and π(f) is the operator ∫ π(h)f(h) dh (integral over Z(ℝ)\
H(𝔸)/ZK). This part of the stable trace is "contained" in 
the stable elliptic part of the trace (for all this, see 3.10).

1.11   Because φH
p  ℋ(H(ℚp), KH

p) and is non-zero, tr 
πp(φH

p) ≠ 0  πp has a non-zero vector fixed by KH
p. Hen-

ce ψp is unramified, and in this case exactly one πp in 
Φ(ψp) has a non-zero vector fixed by KH

p.
   It follows from 3.8 that we can restrict the summation 
to those ψ for which φ = η'◦ψ is elliptic and admissible 
for G (φ is elliptic because φ∞ is elliptic), this set is deno-
ted by Ψ(H)G-e.

1.12   Let Φ(G)e denote the set of (equivalence classes of)
elliptic tempered admissible homomorphisms φ: Lℚ → 
LG0Lℚ such that χ φ∞ = ν-1 and χ φfǀZK = 1.
   Let ψ  Φ(H)G-e, then φ = η'◦ψ  Φ(G)e, we let ΠH and 
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Π denote Π(ψ) and Π(φ). We can assume that ψ∞ and φ∞ 
are elliptic (see 3.8), and, by replacing ψ∞ by an equiva-
lent, we can assume that ψ∞(ℂ)  LTH0ℂ and ψ∞(τ) = 
hτ for some h  NmLH0(LTH0), then φ∞(ℂ)  LT0ℂ and 
φ∞(τ) = gτ for some g  NmLG0(LT0). φ∞(τ) determines an
action ι' on LT0, and for this action of the non-trivial ele-
ments in Gal(ℂ/ℝ), LT0Gal(ℂ/ℝ) is the L-group of the 
fundamental Cartan subgroup (T0)ℝ of Gℝ (via the isomor-
phism X*(T0) ↔ X*(LT0)). To φ∞ is associated a Ω(G(ℂ), 
T0(ℂ))-orbit Ωλ of continuous regular characters of T0(ℝ) 
(Bo - note that the action of the elements of  Ω(G(ℂ), T0 

(ℂ)) on T0(ℂ) is defined over ℝ because (T0∩Gder)(ℝ) is 
compact), and so a set of discrete series representations of
G(ℝ), this set is just Π(φ∞)  = Π∞.
   φ∞ǀℂ has the form z → z Λ0zι'Λ0z, where Λ0  X*(LT0) 
ℝ (in fact Λ0  ½X*(LT0) because Λ0  δ+X*(LT0) and 
Λ0ǀZ = the rational character ν-1 - δ is the half sum of the 
positive roots of G w.r.t. T0 for some order. Since Λ0 is 
non-singular it lies in an open Weyl chamber, let μ0 be the
weight in Ωμ ( X*(LT0)) lying in the closure of the oppo-
site chamber. The Ω(LH0, X*(LTH0))-orbit of μ0 (regarded 
as a weight in X*(LTH0)) is determined by (the equivalen-
ce class of) ψ∞.
   Because (Hℝ, s, η) is elliptic, η(s)2  Z, and (Hℝ, s, η) 
can be constructed from (T0)ℝ, and the character κ∞ of ℰ 
(T0/ℝ) = X*(LT0

der)/2X*(LT0
der) (the Tate-Nakayama iso-

morphism, note that ι' acts on X*(LT0
der) by μ → -μ) given

by κ∞({μ}) = μ(η(s)) (= ±1). The restriction of κ∞ to 𝒟(T0/
ℝ) = Ω(G(ℂ), T0(ℂ))/Ω(G(ℝ), T0(ℝ)) has image ℋ (be-
cause κ∞({ω}) = (ωμh0 – μh0)(η(s))).
   (H, s, η) and (the equialence class of) ψ∞ determines a 
class decomposition of Π∞:
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                                   Π∞ = ∪iℋ Πi
∞,

where Πi
∞ = {π ǀ ∃ω  Ω(G(ℂ), T0(ℂ)): κ∞({ω}) = i, and π

is attached to λ0◦ω}, here λ0 is the character of T0(ℝ) de-
termined by Λ0.
   We choose a function fG

ξ: G(ℝ) → ℂ such that SO∞(ε, 
fG

ξ) = α(ε) (3.6), and let

        m(ΠH
∞) = Σ <1, π> tr π(fH

ξ) (sum over π  ΠH
∞)

and
          m(Π∞) = Σ <1, π> tr π(fG

ξ) (sum over π  Π∞).

Since we can assume that m(ΠH
∞) ≠ 0, we can (3.8) assu-

me that ψ∞ and φ∞ are elliptic, and it follows from 3.6 that

                   m(ΠH
∞)∙i = e∞∙m(Π∞) <η(s), Πi

∞>
for i  ℋ .
   If we in the de-composition rH

𝓅,j =  iℋ
 ˅rH,i

𝓅,j, instead 
of letting the summand indexed by 1  ℋ be that contai-
ning μh0, now be that containing μ0, we get a new de-com-
position:
                                 rH

𝓅,j =  iℋ
 rH,i

𝓅,j,
and
                                    rH,i

𝓅,j =  ˅rH,iη
𝓅,j,

where η = (μ0 - μh0)(η(s))) (= ±1).
   Now we have

      m(ΠH
∞) Σj=1

∞
,rǀj ǀωǀjs/j tr πp(r∙fH

,j𝓅 )
   = m(ΠH

∞) Σiκ
 i log L(s - d/2, πp, ˅rH,i

,r𝓅 )
   = m(ΠH

∞) Σiκ
 i∙η log L(s - d/2, πp, rH,i

,r𝓅 )
   = e∞∙m(ΠH

∞) Σiκ <η(s), Πiη
∞> log L(s - d/2, πp, rH,i

,r𝓅 ),
here we have used that tr ˅rH,i

,r𝓅 (ψp(σ)j) = 0 for j not divsi-
ble by r (because ˅r is induced from a subgroup of index 
r). We recall that the L-function associated to an unrami-
fied admissible homomorphism φ: Wℚp → LG0Wℚp (that 
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is, an admissible homomorphism Gal(ℚp
un/ℚp) → LG0 

Gal(ℚp
un/ℚp) or a semisimple LG0-conjugacy class in LG0 

σ) and a (finite dimensional) representation r of LG0Gal 
(ℚp

un/ℚp) is defined by

         L(s, Π(φ), r) = L(s, π, r) = det(1 - ǀωǀs r(φ(σ)))-1

or
               log L(s, π(φ), r) = Σj=1

∞ ǀωǀjs/j tr r(φ(σ)j)
 - π is the representation in Π(φ) having a non-zero vector
fixed by the maximal compact subgroup Kp, and σ is the 
Frobenius in Gal(ℚp

un/ℚp).
   Since the class Mℚ  ℳ(ℚ) is left fixed by Gal(ℚ/E) 
(recall that E by definition is the smallest Galois exten-
sion of ℚ having this property), we can construct a (finite 
dimensional) representation 0r of LG0Gal(ℚ/E) (unique 
up to isomorphism) such that it is irreducible on LG0 ha-
ving extreme LT0-weights Ωμ, and such that Gal(ℚ/E) acts
trivially on the LB0-highest weight space (the construction
is analogous to the earlier construction of 0r ,r𝓅  associated 
to the class M𝓅  ℳ(ℚp) left fixed by Gal(ℚp/E𝓅), recall 
that Ωμ is the Weyl-group orbit in X*(LT0) associated to 
Mℚ, and that E is the smallest Galois extension of ℚ hav-
ing the property that if σ  Gal(ℚ/E) and μ  Ωμ, then σμ 
 Ωμ). By induction we have a representation r of LG0 
Gal(ℚ/E), and by lift we have a representation, also deno-
ted r, of LG0Lℚ.
   The restriction rH of r to LH0Lℚ (via η') has a decompo-
sition formed in an analogous way as before

rH = iℋ rH,i

(the summand indexed by 1  ℋ contains μ0, and the de-
composition is determined by the equivalence class of 
ψ∞).
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   The restriction of the representation rH,i to LH0Lℚ is the 
lifting of the representation 𝓅ǀp rH,i

𝓅,r to LH0Gal(ℚp
un/ℚp) 

(note that we shall use different imbeddings ℚ → ℚp for 
the construction of the various rH,i

𝓅,r, 𝓅ǀp). The constructi-
on can also be carried out in the following way: choose τ 
 Gal(ℚ/ℚ) such that its restriction to E transforms 𝓅 to
𝓅, since τ normalizes Gal(ℚ/E), 1τ  LG0Gal(ℚ/E) nor-
malizes LG0Gal(ℚ/E), and if we restrict 0r◦ad(1τ) to LG0 

WE𝓅 (via WE𝓅 → WE → Gal(ℚ/E)), it will be the lifting 
of a representation of LG0Gal(ℚp

un /E𝓅), if we induce this 
to LG0Gal (ℚp

un/ℚp) and then restrict to LH0Gal (ℚp
un/

ℚp), we get iℋ  rH,i
𝓅,r (recall that r is independent of 𝓅ǀp 

since E is Galois). We therefore have

            Π𝓅ǀp L(s - d/2, πp, rH,i
𝓅,r) = L(s - d/2, πp, rH,i).

   If follows from 3.7 that for ψ  Φ(H)G-e is

Σ <1, π>f tr π(φH) = ef Σ <η(s), π>f tr π(φ)

(sum over resp. π  Π(ψ)f and π  Π(φ)f), the pairing < , 
>f = ζφΠ(φ)f → ℂ, where ζφ = Sφ/(Sφ)0Z (= Sφ/Z because 
(Sφ)0  Z for φ elliptic), and where Sφ = {g  LG0 ǀ ad(g)◦ 
φ differs from φ by a continuous locally trivial 1-cocycle 
of Lℚ in Z} is defined via ζφ → ζφν and Π(φ) → Π(φν) by 
letting <s, π>f =  Πν≠∞ <sν, πν>ν (< , >f ∙ < , >∞ is canoni-
cal). e∞∙ef = 1 by 3.9.

1.13   Let GΦ(H)G-e denote the set Φ(H)G-e, where the equi-
valence relation is replaced by Z-equivalence, and for ψ 
 GΦ(H)G-e let Gζψ = GSψ/(GSψ)0Z, where GSψ is obtained if 
we in the definition of Sψ replace ZH by Z.
   Since ι(G, H) = (H, s, η)-1∙τ(G)∙τ(H)-1 and the number of
Z-equivalence classes in the equivalence class of Φ(H)G-e 
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containing ψ is ǀGζψǀ∙ǀζψǀ-1∙τ(G)∙τ(H)-1 (K3) we have      

Σ ι(G, H) Σ ǀζψǀ-1 (...) = Σ λ(H, s, η)-1 Σ ǀGζψǀ-1 (...)

(sum over (H, s, η)  ℰ and ψ  Φ(H)G-e resp. GΦ(H)G-e).
   Let ~ denote the conjugation on ζφ. If ψ and ψ' are Z-
equivalent, then η'◦ψ and η'◦ψ' are equivalent. We can 
therefore for φ  Φ(G)e and {sZ}  ζφ/~ restrict the abo-
ve sum to those (H, s, η)  ℰ and ψ  GΦ(H)G-e such that 
if φ' = η'◦ψ, then φ' ~ φ and the canonical bijection ζφ'/~ 
↔ ζφ/~ maps {η(s)Z} to {sZ}, and then summarize over 
φ and {sZ}.

1.14   For given φ  Φ(G)e and {sZ}  ζφ/~ there exists 
((H, s, η), ψ) which maps to (φ, {sZ}), and the second li-
ne of (13) is independent of ((H, s, η), ψ). This follows 
from the following way to define the first parenthesis in 
(14).
   By replacing φ by an equivalent we can assume that s 
LT0 and φ∞(ℂ)  LT0ℂ. We construct (H, s, η)  ℰ and 
ψ  Φ(H) such that φ' = η'◦ψ, and sZ = η(s)Z: take LH0 = 
(centralizerLG0(s))0 and the action of σ  Gal(ℚ/ℚ) on LH0 
to be given by kσgwσ, where w → σ and φ(w) = gwσ 
(gwσ  NmLG0Gal(ℚ/ℚ)(LH0)) and kσ  LH0 chosen such that
the action on LH0 leaves LTH0 = LT0 and LBH0 = LH0∩LB0 
invariant and permutes the root vectors (used in the con-
struction of LG0Gal(ℚ/ℚ)) associated to the LBH0-simple 
roots of LTH0 in LH0 (the action is uniquely determined by 
these requirements), then s = s, η = the inclusion LH0  
LG0 and ψ(w) = φ(w)η'(w)-1w. ψ∞ǀℂ determines a μ0  
X*(LTH0) (see 1.12), and so a decomposition r = iℋ rH,i. 
If we had chosen another pair (φ', s') equivalent to (φ, s), 
there would exist a g  LG0 such that φ'(w) = c(w)∙(ad(g) 
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◦φ)(w) (c a continuous locally trivial 1-cocycle of Lℚ in 
Z) and s'Z = ad(s)Z. If we define the map β(g): LH0Gal 
(ℚp

un/ℚp) → LH'0Gal(ℚp
un/ℚp) by h → ghg-1 and σ → (t')-

1σ, where t'  ZH' is such that η'p(σ) = t'gηp(σ)g-1, we ha-
ve tr rH'◦β(g) = tr rH, and ψ'p = z(β(g)◦ψp)z-1 (if c(σ) = 
zσ(z)-1, z  Z). Furthermore since LTH'0 = β(g)(LHH0), ψ'∞ǀ 
ℂ = β(g)◦ψ∞ǀℂ and μ'0 = (g)(μ0), we have ℋ' = ℋ and tr 
rH',i◦β(g) =  tr rH,i and so L(s - d/2, πp, rH',i) = L(s - d/2, πp, 
rH,i). We shall also use that < , π>: ζφν → ℂ (for π  Π(φν),
ν place) is a class function.
   Since

Σ (H, s, η)-1 Σ ǀGζψǀ-1 = ǀ(ζφ)sZǀ-1

(sum over (H, s, η)  ℰ, ψ  GΦ(H)G-e),
where the summation is taken over the above ((H, s, η), 
ψ) (K3), and since

            Σ ǀζφǀ-1 = ǀ(ζφ)sZǀ-1 (sum over sZ ζφ, sZ ~ sZ),
we get (14).
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2   The formal part of the proof

         Σ𝓅ǀp log Z(s, S𝓅(K), ξ)

(1) = Σ𝓅ǀp Σj=1
∞ ǀω𝓅ǀjs/j Σ tr(Φ𝓅

j)x (sum over x  S𝓅(K)(κj))

(2) =  ---"--- Σφ Σ tr ξ(ε) ǀ(Iφ)ε\(Yj
pYp)ǀ (sum over ε  Iφ/~K)

(3) =  ---"--- Σ tr ξ(ε) meas((Iφ)εZK\(Gσ
δ(ℚp)Gγ(𝔸p

f)))
                                                  ∙TO(δ, f~𝓅,n)∙O(γ, φp)
                     (sum over {(φ, ε)} j-perm. K-equ. cl.)

(4) =  ---"--- Σ tr ξ(ε) Σ  ---"---
       (sum over ε  G(ℚ)n

∞/~K, {(φ, ε)} j-perm. K-equ. cl., ε' ~K ε)

(5) =  ---"--- Σε{fav.rep.} c∞ tr ξ(ε) Σ meas((Gε)φ(ℚ)ZK\
                          (Gε)φ(𝔸f))∙cp∙TO(δ, f~𝓅,n)∙cp∙O(γ, φp)
                                           (sum over φ  Pε)

(6) =  ---"--- Σε{fav.rep.} α(ε)∙τ(Gε )K Σ cp∙TO(δ, f~𝓅 n)
                                                        ∙cp∙O(γ, φp)
                                            (sum over φ  Pε)

(7) = ---"--- Σε{fav.rep.} α(ε)∙τ(Gε )K∙i(ε)∙ǀK(Gε /ℚ)ǀ-1

                                          ∙Σ κ∞(μ – μh))
                                          ∙(Σ κp(ρ)∙c(Gρε)∙O(ρε, f~

,n𝓅 ))
                                          ∙(Σ κp(ρ)∙c(Gρε)∙O(ρε, φp)))
              (sum over κ  K(Gε/ℚ), ρ  ℰ(Gε/ℚp), ρ  ℰ(Gε/𝔸p

f))
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(8) =  ----"---- (1/r) Σ Σ i(ε)∙ǀK(Gε /ℚ)ǀ-1∙τ(Gε )K

                                         ∙(Δ∞(γ, ε)∙α(ε)∙(Σ κ∞(μ – μh))
                                         ∙(Δp(γ, ε)∙r Σ ...)
                                         ∙(Δp(γ, ε)   Σ …)
                                      (sum over ε  (G(ℚ)n

∞/~K, ...)

(9) = Σ𝓅ǀp Σj=1
∞

r ǀj ǀω𝓅ǀjs/j Σ ι(G, H) Σ i(γ)∙ǀK(Hγ/ℚ)ǀ-1

                         ∙τ(Hγ)K∙SO∞(γ, fH
ξ)

                         ∙SOp(γ, fH
,j𝓅 *φH

p)∙SOp(γ, φHp)
                      (sum over (H, s, η)  ℰ∞, γ  H(ℚ)i

∞/~K)

(10) = ---"--- Σ ι(G, H) Σ ǀζψǀ-1 Σ <1, π> tr π(FH
,j𝓅 )

                      + non-temp.-cusp. part
                      (sum over (H, s, η)  ℰ, ψ  Φ(H)e, π  Π(ψ))

(11) = non-temp.-cusp. part + Σ ι(G, H) Σ ǀζψǀ-1

                              ∙(Σ <1, π> tr π(fH
ξ))

                              ∙(Σ𝓅ǀp Σj=1
∞ ǀω𝓅ǀjs/j tr πp(r∙fH

𝓅,j))
                              ∙(Σ <1, π> tr π(φH))
       (sum over (H, s, η)  ℰ, ψ  Φ(H)G-e, π  ΠH

∞, 𝓅ǀp, π  ΠH
f)

(12) = non-temp.-cusp. part + Σ ι(G, H) Σ ǀζψǀ-1 m(Π∞)
                                 ∙(Σ <η(s), Πiη

∞> log L(s - d/2, πp, rH,i))
                                 ∙(Σ <η(s), π> tr π(φ))
               (sum over (H, s, η)  ℰ, ψ  Φ(H)G-e, i  ℋ, π  Πf)

(13) = non-temp.-cusp. part + Σ Σ Σ λ(H, s, η)-1 Σ ǀGζψǀ-1

                                     ∙m(Π∞)∙last two lines of (12)
   (sum over φ  (G)e, {sZ}  ζφ/~, (H, s, η)  ℰ, ψ  ΦG(H)G-e,
                                                             ((H, s, η), ψ) → (φ, {sZ}))
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(14) = non-temp.-cusp. part

            + log ΠφΦ(G)e ΠsZζφ (Πiκ L(s - d/2, πp, rH,i)b)a)

         b = <s, Πiη
∞> and a = ǀζφǀ-1 m(Π∞)∙(ΣπΠf <s, π> tr π(φ))
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3  List of conjectures

3.1   If E is unramified over p, G is quasi-split over ℚp, Kp

is hyperspecial, and if Kp is so small that S(K) has good 
reduction modulo the prime ideal 𝓅 of E over p (that is, 
the reduced variety S𝓅(K) exists and is proper and smo-
oth), then the set of equivalence classes of permissible 
homomorphisms φ: ℒ → 𝐺 can be put into a bijective 
correspondance with a class decomposition of S𝓅(K)(κ) in
which each class is invariant under the Frobenius action, 
and the class corresponding to φ can be put into a bijecti-
ve correspondance with Xφ(K) such that the action of the 
Frobenius on the class corresponds to the action of Φ on 
Xφ(K).
   The proof of this conjecture seems to be the most diffi-
cult part of the theory, and I will sketch the proof in some 
of the cases in which the Shimura variety S(K) parametri-
zes a family of polarized abelian varieties with endomor-
phism and level structure (of type K). G is the group of 
symplectic similitudes on a ℚ-vector space V w.r.t. a non-
degenerate alternating bilinear form ψ (on V) and the ac-
tion (on V) of a simple ℚ-algebra D of degree d2 over its 
center L, that is, G = {g  GLD(V) ǀ ψ(gu,gv) = ψ(c(g)u, 
v) c(g)  L0} -  D is endowed with a positive involution 
*, ψ satisfies ψ(xu, v) = ψ(u, x*v) (x  D) and L0 is the fi-
xed field of * on L. There exists a homomorphism h: S →
Gℝ defined over ℝ such that the corresponding Hodge 
structure on Vℝ is of type (l, 0)+(0, l) and such that 
ψ(u, h(i)v) is symmetric and positively definite. We choo-
se an order 𝒪D of D and an 𝒪D-invariant lattice Vℤ of V, 
and we choose p such that p is unramified in D, Dℚp is 
a product of matrix algebras, 𝒪Dℤp is a maximal order 
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and ψ: VℤpVℤp → ℤp is perfect, then *(𝒪Dℤp) = 𝒪Dℤp, 
and we take Kp = G(ℚp)∩End 𝒪D(Vℤp). If Kp is sufficiently 
small, then the pair (G, h) and K = Kp∙Kp defines a Shi-
mura variety S(K) satisfying all our wanted properties. 
The definition field E of S(K) is the subfield of ℚ genera-
ted by the image of the linear map t: D → ℚ given by t(x)
= tr(xǀV1,0

h).
   S(K)(E) can be put into a bijective correspondance with
the set of (isomorphy classes of) quadruples (A, ι, Λ, η), 
where A is an abelian variety over ℂ up to isogeny, ι is a 
homomorphism D → End(A) such that tr(xǀLie*A) = t(x) 
for x  D (Lie*A is the cotangent space of A), Λ is a L0-
homogeneous polarization on A which induces the invo-
lution * on D, and η is an equivalence class for the action 
of K of D𝔸f-module isomorphisms η: H1(A, 𝔸f) →~ 
V𝔸f which transform ψ to the form on H1(A, 𝔸f) indu-
ced by a polarization in Λ up to multiplication by an ele-
ment of L0𝔸f.
   S𝓅(K)(κ) can be put into a bijective correspondance 
with the set of (isomorphy classes of) quadruples (A~, ι~, 
Λ~, η~), where A~ is an abelian variety over κ up to iso-
geny of degree prime to p, ι~ is a homomorphism 𝒪D → 
End(A~) such that tr(xǀLie*A~) = t(x) for x  𝒪D, Λ~ is a 
L0-homogeneous polarization on A~ which induces the 
involution * on 𝒪D and which contains a polarization of 
degree prime to p, and η~ is an equivalence class for the 
action of Kp of 𝒪D𝔸p

f-module isomorphisms η~: H1(A~,𝔸p
f) →~ V𝔸p

f which transform ψ to the form on H1 

(A~, 𝔸p
f) induced by a polarization in Λ~ up to multipli-

cation by an element of L0𝔸p
f. An isogeny from (A~, ι~,

Λ~, η~) to (A~', ι~', Λ~', η~') is an isogeny from (A~, ι~, 
Λ~) to (A~', ι~', Λ~') - an isogeny of degree prime to p is 
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an isomorphism. The class decomposition of S𝓅(K)(κ) is 
in our special case the isogeny classes.
   The proof falls into two parts. In the first part it is pro-
ved that the set of equialence classes of permissible ho-
momorphisms φ: ℒ → 𝐺 parametrize the set of isogeny 
classes in S𝓅(K)(κ). In the second part it is proved that an 
isogeny class has the decripted structure. The first part 
will be presented in two variants. The first builds on some
unproved conjectures from the algebraic geometry, the se-
cond does not need any unproved conjectures but instead 
a theorem of Kottwitz (which was unproved at the time 
LR was published but which is now proved (by Kottwitz 
(unpublished) and independently by Reimann and Zink 
(RZ))).
   The first variant can be outlined in the following way:
   By using the Grothendieck standard conjectures we can
construct the Tannakian category Mκ (over ℚ) of (all) mo-
tives over κ. We can (without use of unproved results) 
construct the neutral Tannakian category Mℚ (over ℚ) of 
(all) motives over ℚ, the associated affine ℚ-group is the 
connected motivic Galois group G0 (we have chosen an 
imbedding ℚ → ℂ). A sub-Tannakian category CMℚ of 
Mℚ is generated by the abelian varieties over ℂ with com-
plex multiplication and the Tate object, the associated af-
fine ℚ-group is the connected Serre group S. We therefore
have a projection G0 → S. Any abelian variety over ℂ 
with complex multiplication can be reduced modulo p 
(we have chosen an imbedding ℚ → ℚp determining 𝓅) 
and the reduced variety determines a motive in Mκ. By 
using the Hodge conjecture for abelian varieties over ℂ 
with complex multiplication we can extend this operation 
to a functor CMℚ → Mκ. If L  ℚ is a CM-field and 
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LCMℚ is the sub-Tannakian category of CMℚ generated by
the abelian varieties over ℂ with complex multiplication 
through L and the Tate object, then the associated affine 
ℚ-group is LS, and if we let LMκ denote the sub-Tannakian
category of Mκ generated by the image of LCMℚ by the re-
duction functor, then LMκ is algebraic, and by using the 
Tate conjecture over a finite field, we can prove that "the"
gerb associated to LMκ is ℘L (constructed in LR and in the
appendix, we have a homomorphism ℒ → ℘). We there-
fore have an injective homomorphism of gerbs ℘L → 𝐺LS 
(determined up to conjugation by an element of ℘L(ℚ)).
   Now let (A~, ι~, Λ~, η~) be a point of S𝓅(K)(κ). To A~ 
is associated a motive in Mκ (belonging to LMκ for L suffi-
ciently large), the homogene part of degree 1 of this mo-
tive corresponds to a representation of ℘. We can assume 
that the representation space is V, that the action of D on 
V determined by ι~ is the given action, and that some po-
larization η~  Λ~ corresponds to ψ on V. Then the re-
presentation maps into 𝐺 and the composition of this ho-
momorphism ℘ → 𝐺 with ℒ → ℘ is a permissible homo-
morphism φ: ℒ → 𝐺 (that φ is permissible is easily seen 
in the setting of the second variant of the proof below). If 
we had chosen another η~  Λ~, then the new φ would be
equivalent to the former, and if (A~', ι~', Λ~',  η~') is iso-
gene to (A~, ι~, Λ~, η~), then the corresponding equiva-
lence class of permissible homomorphisms ℒ → ℘ is the
same. Conversely: a permissible homomorphism φ: ℒ →
𝐺 factorizes through ℒ → ℘ and thus gives rise to a re-
presentation of 𝓅 and so a motive in Mκ, this motive is 
the homogene part of degree 1 of the motive associated to
an abelian variety A~ over κ, the action of D on the repre-
sentation space V of φ determines an action ι~ of 𝒪D on 
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A~, and the form ψ on V determines a L0-homogeneous 
polarization Λ~ on A~. Finally there exists a level structu-
re η~ on A~ (because φ is permissible). Thus we have 
constructed a point (A~, ι~, Λ~, η~) of S𝓅(K)(κ), another 
choice of φ (equivalent to the former) would lead to an 
isogene point of S𝓅(K)(κ). These two maps between the 
set of equivalence classes of permissible homomor-
phisms φ: ℒ → 𝐺, and the set of isogeny classes of S𝓅(K)
(κ) are the inverse of each other.
  Then we come to the second variant.
   A special point of S(K)(ℂ) is a triple (T, h, g), where T 
is a Cartan subgroup of G, h  X∞ and factorizes through 
T and g  G(𝔸f) (two triples are equivalent (and identi-
fied) if they differ by action of G(ℚ) on the left and acti-
on of K on the right of g). In the above correspondance 
between points of S(K)(ℂ) and abelian varieties with ad-
ditional structures, a special point corresponds to a sixtu-
bel (A, ι, Λ, η, R, θ) (up to isomorphism), where the qua-
drupel (A, ι, Λ, η) corresponds to the point {(h, g)}, and 
R is the CM-algebra (= product of CM-fields) defining T 
(thus T(ℚ) = {r  R ǀ r∙r  L0} and dim ℚR = dimℚ(V)/d), 
and θ is a complex multiplication through R on (A, ι, Λ,) 
- that is, an involution preserving imbedding R → EndD 

(A). This sixtubel can be constructed as follows: μh: ℂ →
(Rℂ) determines a complex multiplication (R, Φ), if B 
is the (polarizable) abelian variety over ℂ up to isogeny 
with complex multiplication (R, Φ), we take A = Bd. Be-
cause DLR = Md(R), D acts on A, this is ι. The represen-
tation space of the representation of KS (K sufficiently lar-
ge field) corresponding to A (or rather, to the homogene-
ous part of degree 1) can be identified with V such that 
the action of D defined by ι is the given action, and the 

49



"diagonal" action of R on V is that of T. We let Λ be the 
L0-homogeneous polarization on A defined by ψ, and η be
the set of isomorphisms H1(A~, 𝔸f) = V𝔸f →~ V𝔸f 
given by Kg-1, and we let θ be the "diagonal" action of R 
on A. If we reduce (A, ι, Λ, η, R, θ) modulo p, we get a 
special point (A~, ι~, Λ~, η~ , R, θ~) of S𝓅(K)(κ).
   The second variant can be outlined in the following 
way:
   Given (T, h), if we choose a g  G(𝔸f), then to (T, h, g)
we have constructed a special point (A, ι, Λ, η, R, θ) of 
S(K)(ℂ), and (by reduction modulo p) a special point (A~,
ι~, Λ~, η~, R, θ~) of S𝓅(K)(κ), the isogeny class of S𝓅(K)
(κ) containing the point (A~, ι~, Λ~, η~) is independent of
the choice of g. The isogeny classes of S𝓅(K)(κ) construc-
ted from (T, h) and (T', h') are equal if and only if ψT,μh 
and  ψT',μh' (see appendix) are equivalent. This is a conse-
quence of the fact that the existence of an isogeny from 
(A~, ι~, Λ~) to (A~', ι~', Λ~') is equivalent to the existen-
ce of an automorphism g of Vℚ satisfying the conditi-
ons (we have here identified H1(A, ℚ) and V in such a 
way that ι corresponds to the given action of D on V and 
that the bilinear form ψλ on H1(A, ℚ) associated to some λ
 Λ corresponds to ψ, and analogous for A'):

   1) g commutes with the action of D

   2) g transforms Λ' to Λ

   3) if we identify the contravariant rational Dieudonné 
module associated to A~ resp. A~' with Vκ, where the 
F-translation is given by x → b~σ(x) resp. x → b~'σ(x), 
with b~ = χ(b~

0) resp. b~' = χ'(b~
0) for b~

0  KS(κ), then we 
can choose s  T(ℚp) such that g = gs  G(ℚp

un) and b~' =
gb~σ(g)-1 (for χ and χ', see below)
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   4) if we identify the ℓ-adic (ℓ ≠ p) cohomology spaces 
associated to A~ and A~' with inner forms of Vℚℓ, then 
g shall transform these spaces to each other

   5) if the Frobenius endomorphisms on A~ and A~' over 
κj (for j sufficiently large) correspond to the automor-
phisms ε~ and ε~' on V, then we shall have ε~' = gε~g-1 (for 
j sufficiently large)

these conditions for g are equivalent to the conditions:
   1') g  G(ℚ)

   2') g is an equialence for the two homomorphisms (*) 
on the kernel

                      ℘  → ψμ0 𝐺KS →χ, χ' 𝐺T, 𝐺T'  𝐺 (*)
here μ0 is the canonical cocharacter of KS, ψμ0 is defined 
in the appendix, and the homomorphisms χ: KS → T and 
χ': KS → T' are defined over ℚ and map μ0 to μh and μh'

   3') g is a locally equivalence for the two homomor-
phisms (*) w.r.t. ζ∞: 𝒲 → P, ζp: 𝒟 → ℘ and ζℓ: 𝐺ℓ → ℘ 
(for ℓ ≠ p).

[Sketch of proof: 2') follows from 5), and the definition of
ψμ. 2) is tantamount to ψ(gx, gy) = ψ(ax, y) for some a  
L0ℚ, and h'(i)ι = g(h(i)ι)g-1, but since v(h0(i)ι)v-1 = 
μ0(-1)ι = (ψμ0◦ζ∞)(τ), where v = (say) (μ0+μ0)(√i), we ha-
ve ψμh'◦ζ∞ = ad(g)◦(ψμh∙ζ∞). If b0

~  KS(κ) determines the 
F-translation, and b0  KS(κ) is constructed from ψμ0◦ζp: 𝒟
→ 𝐺KS (as in 1.2), then the theorem of Kottwitz states that 
b0 = u0b0

~σ(u0)-1 for some u0  KS(κ), in fact u0  Im ψμ0 

(P(κ)), we therefore have b = ub~σ(u)-1, b' = u'b'~σ(u')-1 
and u' = gug-1 (u = χ(u0), ...), the condition b'~ = gb~σ(g)-1 
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is then equivalent to b' = gbσ(g)-1. This implies that b' also
can be constructed from ad(g)◦(ψμh∙ζp), therefore we must 
have ψμh'◦ζp = ad(g)◦(ψμh∙ζp). The above mentioned forms 
of Vℚℓ are determined by a homomorphism ζℓ': 𝐺ℓ → ℘
(a trivialization), and this is equivalent to ζℓ: 𝐺ℓ → ℘, 4) 
is tantamount to ψμh'◦ζℓ' =ad(g)◦(ψμh◦ζℓ'), but this condition
is equivalent to ψμh'◦ζℓ = ad(g)◦(ψμh◦ζℓ) (because ψμh'◦ζℓ = 
ad(y')◦(ψμh'◦ζℓ') = ad(y')◦ad(g)◦(ψμh◦ζℓ') = ad(g)◦ad(y)(ψμh◦ 
ζℓ') = ad(g)◦(ψμh◦ζℓ'), here y = ψμh(γ) and y' = ψμh'(γ) if ζℓ = 
ad(γ)◦ζℓ' for γ  P(ℚℓ)).]

   Now we shall use that two homomorphisms ψ, ψ': ℘ →
𝐺 are equal if they are equal on the kernel and locally 
equal, and that the two homomorphisms (*) composed 
with the homomorphism ℒ → ℘ are ψT,μh and ψT',μh'.
   Every permissible homomorphism φ: ℒ → 𝐺 is equiva-
lent to one of the form ψT,μh (LR, Satz 5.3), we can conse-
quently define an injective map from the set of equiva-
lence classes of permissible homomorphisms φ: ℒ → 𝐺 to
the set of isogeny classes of S𝓅(K)(κ). This map is surjec-
tive because every point (A~, ι~, Λ~, η~) of S𝓅(K)(κ) is 
component of a special point (A~, ι~, Λ~, η~, R, θ~) for 
some R and θ~ (because A~ is defined over a finite field), 
and a special point of S𝓅(K)(κ) is the reduction modulo p 
of a specia1 point of S(K)(ℂ) (Z2, § 4.4).
   Now we come to the second part of the proof.
   Let φ: ℒ → 𝐺 be a permissible homomorphism, and let 
A  S𝓅(K)(κ) be the corresponding isogeny class, then we
shall construct a bijection A →~ Iφ\(XpXp)/Kp) such that 
the Frobenius action (over κ) on A corresponds to the ac-
tion Φ = (bσ)r on Xp. We can assume that φ = ψT,μh, and 
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we choose a g  G(𝔸f). To (T, h, g) we have constructed 
a special point (A~, ι~, Λ~, η~, R, θ~) of S(K)(ℂ) and (by 
reduction modulo p) a special point (A~, ι~, Λ~, η~, R, θ~)
of S𝓅(K)(κ). A is the isogeny class containing (A~, ι~, 
Λ~). We identify the contravariant rational Dieudonné 
module of A with Vκ as above, then the F-translation is 
given by x → b~σ(x), where b~  T(κ), furthermore b~ =   
u-1bσ(u), where b is constructed from φ (as in 1.2) and u 
 T(κ). In the first variant this follows from the fact that
𝒟 is the gerb associated to the Tannakian category of iso-
crystals over κ, and that the association of the contrava-
riant rational Dieudonné module to a motive in Mκ corres-
ponds to the operation of composing a representation of 
 with a homomorphism 𝒟 →  which is equivalent to 
ζp: 𝒟 →  (LR, p. 162), and in the second variant this is 
the meaning of the mentioned theorem of Kottwitz.
   If  (A~', ι~', Λ~', η~')  A, and if α is an isogeny from 
(A~, ι~, Λ~) to (A~', ι~', Λ~'), then we can construct an 
element (xp, xp)  XpXp/Kp as follows: α is the composi-
te of an isogeny αp whose degree is divisible by p, and an 
isogeny αp whose degree is prime to p, αp induces a ho-
momorphism from the contravariant Dieudonné module 
of A~' into Vκ. Let M' be the image of this, then M' is a 
lattice of Vκ, and M' = g(Vℤ𝒪κ) for some g  G(κ). If 
we take xp = ugx0  G(κ)x0 (see 1.2), then x  Xp. αp is in 
fact an isomorphism between (A~, ι~, Λ~) and (A~', ι~', 
Λ~'), and since η~' can be regarded as an element of Xp/
Kp, η~' determines an element xp of  Xp/Kp. The class of 
(xp, xp) in Iφ\(XpXp)/Kp) is independent of the choice of 
α, and the map A → Iφ\(XpXp)/Kp) is a bijection (remark,
that we have an isomorphism Iφ →~ Aut(A~, ι~, Λ~), and 
that u determines an isomorphism Jφ' →~ Aut(Vκ, ι, 
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{ψ}).
   The Frobenius action (over κ) on A is given by (A~', ι~', 
Λ~', η~') → (A~'(q), ι~'(q), Λ~'(q), η~'(q)) (the inverse image 
by the Frobenius over κ), and if we as isogeny from (A~', 
ι~', Λ~') to (A~'(q), ι~'(q), Λ~'(q)) choose α (composed with 
the Frobenius isogeny from (A~', ι~', Λ~') to (A~'(q), ι~'(q), 
Λ~'(q)), then the lattice of Vκ associated to A~'(q) is the 
image of M' by the r-th power of the F-translation, that is 
(b~σ)rM', and the element Xp/Kp associated to η~'(q) is (by
the definition of η~'(q)) that associated to η~'. The Frobe-
nius action on A is therefore given by the action of Φ = 
(b~σ)r on Xp.
   This bijection between the set of equivalence classes of 
permissible homomorphisms φ: ℒ → 𝐺, and the set of 
isogeny classes of S𝓅(K)(κ) can be refined to a bijection 
between the set of equivalence classes of j-K-permissible 
pairs (φ, ε), and the set of j-isogeny classes of S𝓅(K)(κj). 
A j-permissible pair (φ, ε) is j-K-permissible if (Iφ)ε\
(Yp

jYp) (see 1.2) is non-empty, that is, if

   1) ∃x  Xp: ε'x = Φ jx

   2) ∃y  Xp: y-1εy  Kp (see 1.3).

   Two j-K-permissible pairs (φ, ε) and (φ', ε') are equi-
valent if φ' = ad(g)◦φ and ε' = ad(g)(ε)◦z for some g  
G(ℚ) and z  Z(ℚ)K. If (A~, ι~, Λ~, η~) and (A~', ι~', Λ~', 
η~') belongs to S𝓅(K)(κj), then an j-isogeny from (A~, ι~, 
Λ~) to (A~', ι~', Λ~') is an isogeny which commute with 
the Frobenius endomorphisms over κj on A~ and A~'. The 
j-isogeny class corresponding to (φ, ε) is that containing 
the point (A~, ι~, Λ~, η~) of S𝓅(K)(κj) constructed as fol-
lows: We can assume that φ = ψT,μh and ε  T(ℚ) (LR, 
Lemma 5.23). Let v  T(ℚp) and b  T(κ) be constructed 
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from φ◦ζp as in 1.2. Choose gp  G(κ) such that for x = 
gp∙x0 is ε'x = Φ jx and y  Xp such that for y-1εy  Kp, and
if the F-translation on the contravariant rational Dieudon-
né module Vκ of A~ (constructed from (T, h)) is given 
by x → b~σ(x) where b~  T(κ), choose u  T(κ) such 
that b = ub~σ(u)-1. Let g  G(𝔸f) be defined by g =         
v-1u-1gp  and gp = y.
   To (T, h, g) we have constructed a special point (A, ι, Λ,
η, R, θ) of S(K)(ℂ) and (by reduction modulo p) a special 
point (A~, ι~, Λ~, η~, R, θ~) of S𝓅(K)(κ), (A~, ι~, Λ~, η~) 
belongs to S𝓅(K)(κj) and the j-isogeny class of (A~, ι~, 
Λ~, η~) is independent of the choices. The lattice L = 
g∙Vℤ of V (and the complex structure on Vℝ given by h)
de-fine an abelian variety A0 over ℂ in the isogeny class 
of (A, ι, Λ) (namely A0 = ((Vℝ)/L)*), and since ε  
G(ℚ) and εL  L, ε defines an isogeny on (A0, ι, Λ), and 
the reduction of this to (A~, ι~, Λ~) is the Frobenius en-
domorphism over κj.
   The above bijection between the isogeny class corres-
ponding to φ and Iφ\(XpXp)/Kp) has in the present setting 
as analogous a bijection between the j-isogeny class A 
corresponding to (φ, ε) and (Iφ)ε\(Yp

jYp): if in the above 
proof we choose α such that it transforms the Frobenius 
endomorphism (over κj) on A~' to ε  Iφ, then xp belongs 
to Yj

p  Xp, and xp belongs to Yp  Xp/Kp, the class of (xp,
xp) in (Iφ)ε\(Yp

jYp) is independent of the choice of α, and 
the map A → (Iφ)ε\(Yp

jYp) is a bijection.
   A j-triple (ε, δ, γ) consists of ε  G(ℚ)s.s. which is ellip-
tic at infinety, a δ  G(Fn) (n = jr) such that NmFn

/ℚpδ is 
stably conjugate to ε and γℓ  G(ℚℓ) (for each ℓ ≠ p) such 
that γℓ is stably conjugate to ε (and conjugate to ε for al-
most all ℓ). The j-triples (ε, δ, γ) and (ε', δ', γ') are equi-
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valent if ε and ε' are stably conjugate, δ and δ' are G(Fn)-
σ-conjugate, and γ and γ' are conjugate, and they are K-
equivalent if (ε', δ', γ') is equivalent to (εz, εw, γz), where 
z  Z(ℚ)K and w  Z(Fn)∩Kp(𝒪Fn) satisfies NmFn

/ℚpw = 
z. We will not distinguish between a j-triple and its equi-
valence class.
   The Kottwitz invariant of a j-triple (ε, δ, γ) is the ele-
ment β(δ, γ)  K(Gε /ℚ)D (see 1.7) - if ε ~K ε' (stable con-
jugacy modulo Z(ℚ)K), we can identify K(Gε /ℚ)D and K 
(Gε' /ℚ)D, and K-equivalent (ε, δ, γ) and (ε', δ', γ') have 
equal Kottwitz invariants (LR, Lemma 5,18).
   To an equivalence class of j-permissible pairs (φ, ε) we 
have (in 1.3) constructed an equivalence class of j-triples 
(ε, δ, γ). The Kottwitz invariant of such a j-triple is 1, and
conversely: any j-triple whose Kottwitz invariant is 1 is 
the j-triple of a j-permissible pair (LR, Satz 5,25), precise 
i(ε) inequivalent j-permissible pairs have the same equi-
valence class of j-triples (ε, δ, γ). Therefore we can to 
every j-isogeny class A of S𝓅(K)(κj) associate a K-equiva-
lence class of j-triples (ε, δ, γ), namely that associated to 
the equialence class of j-K-permissible pairs correspon-
ding to A. The K-equivalence of j-triples of the j-isogeny 
class containing (A~, ι~, Λ~, η~)  S𝓅(K)(κj) can be con-
structed directly as follows: The Frobenius endomor-
phism on A~ (over κj) determines an automorphism ε~ of 
Vℚ, it belongs to G(ℚ) and can be chosen conjugate to 
an element ε  G(ℚ)s.s.. If the F-translation on the contra-
variant rational Dieudonné module Vκ of A~ is given 
by x → ε~σ(x) (b~  G(κ)), then b~ = ε~b~σ(ε~)-1 (remark
that ε~  G(ℚp

un) because it is conjugate to ε), and we 
must have NmFn

/ℚpb~ = ε~c-1σn(c) for some c  G(κ), we 
take δ = cb~σ(c)-1 (then δ  G(Fn)). Finally the Frobenius
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endomorphism (over κj) on A~ determines via a η~  η~ 
an automorphism γℓ of Vℚℓ (for ℓ ≠ p), this belongs to 
G(ℚℓ) (in fact it is conjugate to an element of Kℓ).
   A long step toward a proof of the conjecture in the ge-
neral case would have been taken if we to every point of 
S𝓅(K)(κj) can construct a K-equivalence class of j-triples 
and prove that its Kottwitz invariant is l.

3.2   Let G be an unramified connected reductive ℚp-gro-
up (such p that Gder is simply connected), let K be a hy-
perspecial subgroup, and let F be an unramified extension
of ℚp of degree n.
   Let M be a G(F)-conjugacy class of homomorphisms 
Gm → GF such that one (and hence all) of the representa-
tions Gm on Lie(Gℚp ) constructed from homomorphisms 
in M has no other weights than 0, ±1. Let f~  ℋ(G(F), 
K(𝒪F))) be the characteristic function of the coset in 
K(𝒪F)\G(F)/ K(𝒪F) corresponding to M (see 1.2), and let f
 ℋ(G(ℚp), K(ℤp))) be the image of f~ by the base-chan-
ge homomorphism (characterized by the property that tr 
πφ(f) = tr πφ'(f~), where φ' = φ'ǀGal(ℚp

un
/F) for every admissib-

le homomorphism φ: Gal(ℚp
un/F) → LG0Gal(ℚp

un/ℚp).
   If ε  G(ℚp)n (defined as in 1.4 but w.r.t. M), let T be an
elliptic Cartan subgroup of G ε and let μ  X*(T) be Mε -
conjugate to a μ satisfying the condition 1.4, then the ele-
ment bε  T(κ) constructed from the homomorphisms ξ-μ:
𝒟 → T(ℚp)Gal(ℚp/ℚp) (see 1.7) satisfies NmF/ ℚpbε =    
εc-1σn(c) (c  G(κ)), and if δε = cbεσ(c)-1, then δε  G(F) 
(and NmF/ ℚpδε = cεc-1), and we have

c(Gε)∙O(ε, f) = c(Gσ
δε)∙TO(δε, f~) (*)

(Gσ
δε is the inner form of Gε, this allows us to choose 
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compatible measures on Gσ
δε (ℚp) and Gε(ℚp)).

   If ε  G(ℚp)s.s.\G(ℚp)n, then O(ε, f) = 0.
   (*) is proved in K7 for M trivial (that is, f~ and f the unit
elements) and in AC for G = GK(n) and arbitrary f~  
ℋ(G(F), K(𝒪F)), ε  G(ℚp)s.s. and δ  G(F), such that ε is 
conjugate (in G(F)) to NmF/ ℚpδ - in fact, this result is con-
jectured true for general G, if orbital resp. twisted orbital 
integral is replaced by stable orbital resp. stable twisted 
orbital integral - in this case SO(ε, f) = 0, if ε  G(ℚp)s.s. 
and not conjugate to a  NmF/ ℚpδ.

3.3   Let G be as in this paper, and let (H, s, η)  ℰ. For γ 
 H(ℚ)e,(G,H)-reg and ε  G(ℚ)e, such that γ is the image of 
ε, we have

i(γ)∙ǀK(Hγ /ℚ)ǀ-1 τ(Hγ)∙τ(H)-1 = i(ε)∙ǀK(Gε /ℚ)ǀ-1∙τ(Gε)∙τ(G)-1.

τ(Hγ) and τ(Gε) are as defined in 1.6, and the measures on 
Hγ(𝔸) and Gε(𝔸) are chosen compatibly (recall that Hγ is
an inner form of Gε) - this measure on Hγ(𝔸) (and an ar-
bitrary measure on H(𝔸)) is used to define orbital inte-
gral on H. τ(H) and τ(G) are the Tamagawa numbers (pro-
ved in K6 for regular elements - we have used that Kott-
witz in K8 has proved that τ(G) = 1 for G simply connec-
ted semi-simple (if G has no E8 factor)).

3.4   Let G be a connected reductive ℝ-group (such that 
Gder is simply connected) which has discrete series repre-
sentations, let T be a fundamental Cartan subgroup, and 
let ξ be a rational representation of G. For each ε  Gε(ℝ) 
we choose a measure on Gε(ℝ), such that the measures on
Gε(ℝ) and Gε'(ℝ) are compatible ε and ε' are stably conju-
gate - then we have a measure on the compact (modulo 
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Z(ℝ)) inner form Gε'(ℝ) of Gε(ℝ). We define α: G(ℝ) → ℝ
by

   α(ε) = c(Gε') tr ξ(ε)/meas(Z(ℝ)\Gε'(ℝ)) 
                  if ε  G(ℝ)e 
               0 if ε  G(ℝ)\G(ℝ)e.

If ε' is stably conjugate to ε, then α(ε') = α(ε).
   Let (H,s, η) be an endoscopic datum for G (we assume 
that η(s)  LT0), for which there is an isomorphism X*(T) 
↔ X*(LT0), such that this, the action of Gal(ℂ/ℝ) on T 
and η(s) determine (H, s, η), and let us choose an exten-
sion η': LH0 Wℝ → 0G0Wℝ of η and a transfer factor Δ( ,
).
   There exists a function fH

ξ on H(ℝ), such that

                            Δ(γ, fH
ξ) = Δ(γ, ε)∙α(ε)

                                                 if γ  H(ℝ)e

                                              0 if γ  H(ℝ)s.s.\H(ℝ),

here ε  T(ℝ) is chosen such that γ is the image of ε via 
the isomorphism X*(T) ↔ X*(LT0) (obvius for Hγ an el-
liptic Cartan subgroup of G, and proved in L7, §6 and Ca 
for H = GL(2) and G an inner form of H) (the measure on
H(ℝ) is of course that compatible with the measure on 
Gε(ℝ) - Hγ is an inner form of Gε).
   If (H,s, η) is not elliptic, we take fH

ξ = 0.

3.5   Let G be as in 3.2, let (H, s, η) be an endoscopic da-
tum for G, and let φ  ℋ(G(ℚp), K) be the characteristic 
function of K.
   If there exists γ  H(ℚp)s.s.(G, H)-reg, such that the sum be-
low is non-zero, then H is unramified (proved in LL for H
elliptic Cartan subgroup of G = GL(2)). We choose an ex-
tension η': LH0Gal(ℚp

un/ℚp) → LG0Gal(ℚp
un/ℚp) of η, 
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and we can choose a hyperspecial subgroup KH of H(ℚp), 
such that every γ  KH is the image of a ε  K.
   There exists a function φH  ℋ(H(ℚp), K), such that if ρ
 H(ℚp)s.s.(G, H)-reg, then

SO(γ, φH) =  Δ(γ, ε) Σ κ(ρ)∙c(Gρε)∙O(ρε, φ) (sum over δ  
                                                                      ℰ(Gε, ℚp))
                        if γ is the image of ε  G(ℚp)s.s.

                     0 if γ is not the image of any ε
(see 3.7).

   Now we assume that η(s)m  Z for some m.

Notation:
   M is a G(F)-conjugacy class of homomorphisms Gm → 
GF such that one (and hence all) of the representations of 
Gm on Lie(Gℚp) constructed from homomorphisms in M 
has no other weights than 0, ±1.
   Ωμ  X*(LT0) is the Weyl-group orbit determined by M.
   0r is the (finite dimensional) representation of LG0 Gal 
(ℚp

un/F) (unique up to equivalence) which is irreducible 
on LG0 having extreme LT0-weights Ωμ, and for which Gal
(ℚp

un/F) acts trivially on the LB0-highest weight space.
   r is 0r induced to LG0Gal(ℚp

un/ℚp).
   n  [F:ℚp]∙ℕ.
   f  ℋ(G(ℚp), K) is associated to the class function x →
tr r(xn) on LG0Gal(ℚp

un/ℚp) by Satake transform.
   γ  H(ℚp)s.s.,(G, H)-reg is the image of ε  G(ℚp)n (defined 
as in 1.4 but w.r.t. M).
   A Cartan subgroup T of Gε and an isomorphism X*(T) 
↔ X*(LT0) are chosen, such that they arise from the cor-
respondance between γ and ε (see 1.9).
   μ0  X*(T) is Mε-conjugate to a μ satisfying the conditi-
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on in 1.4.
   0rH is the restriction of 0r to LH0Gal(ℚp

un/F) (via ηp).
   ℋ  = {(μ - μ0)(η(s)) ǀ μ  Ωμ}  roots of unity.
   For i  ℋ  0rH,i is the subrepresentation of 0rH determi-
ned by {(μ - μ0)(η(s)) ǀ η(s) = i}.
   rH,i is 0rH,i induced to LH0Gal(ℚp

un/ℚp).
   fH

γ  ℋ(H(ℚp), KH) is associated to the class function x 
→ Σiℋ i tr rH,i(xn) on LH0Gal(ℚp

un/ℚp) by Satake trans-
form.
   Then: fH

γ is independent of the choice of ε, and we have

SO(γ, fH
γ*φH) =  Δ(γ, ε) Σ κ(ρ)∙c(Gρε)∙O(ρε, f*φ)

(sum over ρ  ℰ(Gε, ℚp)).

   If ε  G(ℚp)s.s.\G(ℚp)n, then O(ε, f) = 0.
   If γ  H(ℚp)s.s.,(G,H)-reg is not the image of any ε  G(ℚp)n,
then SO(γ, fH

γ*φH) = 0, here fH is constructed as above, 
but μ0  X*(LT0) is chosen arbitrarily.

3.6   Let G be as in 3.4. There exists a function fG on 
G(ℝ), such that

SO(ε, fG) = α(ε)

for ε  G(ℝ)s.s. (proved in L7, L6 and Ca for G = GL(2)) -
the measure on G(ℝ)ε is that entering the defintion of α).
   Let (H, s, η) be as in 3.4, and let ψ  Φ(H) be such that 
φ = η'◦ψ  Φ(G)e. We can assume that φ(ℂ)  LT0ℂ 
and φ(τ) = gτ where g  NormLG0(LT0). The action ι' on 
LT0 given by φ(τ) corresponds (via X*(LT0) ↔ X*(T)) to 
the action on T given by the non-trivial element in Gal(ℂ/
ℝ), therefore LT0Gal(ℂ/ℝ) for this action is the L-group 
of T. To φ is (by the Langlands correspondance, see Bo) 
associated a continuous regular character λ0 of T(ℝ) and 
so a discrete series reprsentation π0 of G(ℝ). This belongs 
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to Π(φ), and we have

ΣπΠ(ψ) <1, π> tr π(fH) = e∞ <η(s), π0> ΣπΠ(ψ) <1, π> tr π(fG)

(for e∞ and < , > see 3.7).

   We can replace the isomorphism X*(T) ↔ X*(LT0) by 
the composite with a ω  Ω(LG0, LT0) =  Ω(G(ℂ), T(ℂ)) 
(because the action of ω on T is defined over ℝ). If we do 
so, we must multiply fH and <η(s), π0> by κ({ω}) = ±1, 
where κ is the character of H1(ℝ, T) = π0(LT0Γ∞)D determi-
ned by {η(s)}  π0(LT0Γ∞)D, as we note that Ω(G(ℂ), T(ℂ)/
Ω(G(ℝ), T(ℝ) = 𝒟(T/ℝ)  H1(ℝ, T), and <η(s), πω

0> = 
κ({ω})<η(s), π0>, here πω

0 is attachad to λ0◦ω.

3.7   Let G be a connected reductive ℚν -group (ν place) 
(such that Gder is simply connected), let (H, s, η) be an en-
doscopic datum for G. Choose an extension η': LH0Lℚν 
→ LG0Lℚν of η, and choose a transfer factor Δν(γ, ε).
   There exists an eν  ℂ, such that the following is true: 
if the function f on G(ℚν) and fH on H(ℚν) are connected 
by

              SO(γ, fH) = Δν(γ, ε) Σ κ(ρ)∙c(Gρε)∙O(ρε, f)
                                        (sum over ρ  ℰ(Gε, ℚν))
                                 if γ is the image of ε  G(ℚν)s.s.

                                 0 if γ is not the image of any ε

(here, γ  H(ℚν)s.s.,(G,H)-reg), then we have for each ψ  
Φ(H)temp that φ = η'◦ψ  Φ(G):

ΣπΠ(ψ) <1, π> tr π(fH) = eν ΣπΠ(ψ) <η(s), π> tr π(f),

< , > is the usual pairing ζφΠ(φ) → ℂ, where ζφ = Sφ/ 
(Sφ)0Z = π0(Sφ/Z) and Sφ = {g  LG0 ǀ ad(g)◦φ = φ}, < , > 
is not canonical, but this does not matter, since the global 
< , >, which is the product of all the local < , >, is cano-
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nical.
   For a given function f on G(ℚν) (smooth and of com-
pact support), we can construct a function fH on H(ℚν), 
such that f and fH are connected as above (see LL for G = 
GL(2), LS2 for G a form of SL(3) and Sh for ν = ∞).

3.8   Let G, fG be as in 3.6, and let φ  Φ(G)temp. If ΣπΠ(φ) 
tr π(fG) ≠ 0, then φ is elliptic, and Π(φ) is the L-packet of 
discrete series representations of G(ℝ) associated to one 
of the absolutly irreducible components ξ˅

Π(φ) of ξ˅. Fur-
thermore we have ΣπΠ(φ) tr π(fG) = (-1)d ∙ the multiplicity 
of ξ˅

Π(φ) in ξ˅ (this result is used only in the conclusion).
   Let G, H, fH be as in 3.4, and let ψ  Φ(H)temp. If ΣπΠ(ψ) 
tr π(fG) ≠ 0, then ψ and φ = η'◦ψ are elliptic (and so φ is 
admissible for G).
   Let G, H be as in 3.7, and let the function φH on H(ℚν) 
be connected with the characteristic function φ of K 
(compact open subgroup of G (ℚν)). If ΣπΠ(ψ) <1, π> tr 
π(φH) ≠ 0, then φ = η'◦ψ is admissible for G.

3.9   Let G be as in this paper, and let (H, s, η)  ℰ. Let γ 
 H(ℚ)e,(G,H)-reg and ε  G(ℚ)e be such that γ is the image 
of ε. Choose the local transfer factors Δν ( , ), such that 
Δν(γ, ε) = 1 for almost all places ν and Πν Δν(γ, ε) = 1. 
Then eν = 1 for almost all places ν and Πν eν = 1.

3.10   We assume that (a sufficiently large part of) the 
Langlands correspondance has been constructed - that is, 
for a given reductive algebraic group, we have a map (ha-
ving the expected properties) from the equivalence clas-
ses of admissible homomorphisms from the Weil- (or rat-
her the Langlands-) group into the L-group associated to 
the group to the L-packets of representations of the group 
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- the map is a bijection in the local case and maps to auto-
morphic representations in the global case.
   Let G be a connected reductive ℚ-group, let 0Z be a clo-
sed subgroup of Z(𝔸) of the form Πν0 Zν (Z center of G) 
such that 0ZZ(ℚ) is closed in Z(𝔸) and 0ZZ(ℚ)\Z(𝔸) is 
compact, let χ be a character of (0Z∩Z(ℚ))\0Z, and let Φ 
(G)e be the set of (equivalence classes of) elliptic tem-
pered admissible homomorphisms φ: Lℚ → LG0Lℚ, such 
that χφǀ0Z = χ (Lℚ is the Langlands group, it is an extensi-
on of Wℚ by a compact group, see L5 and K3). Then the 
stable tempered cuspidal part of the trace is (K3)

dφ
-1 ΣφΦ(G)e ΣπΠ(π) nπ tr π(f)

 - dφ is the number of (global) equivalence classes in the 
local equivalence class of φ (dφ different classes of Φ (G)e

parametrize Π(φ)), and nφ = dφ
-1 ǀζ φǀ-1 <1, π> is the "stable 

multiplicity" of π - f is assumed to be of the form f = Πν fν

and to satisfy f(zg) = χ(z)-1f(g) for z  0Z, and π(f) = ∫Z\G(𝔸)

π(g)f(g) dg) (for all this see LL).
   This part of the stable trace is "contained" in the stable 
elliptic part of the trace.
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Conclusion

The fixed prime number p in this paper is assumed to be 
such that E is unramified at p, Kp is hyperspecial, and that
S (K) has good reduction at 𝓅 for 𝓅ǀp. If S(K) has not 
good reduction at 𝓅, the action of WE𝓅 on Hi

ét(S(K), 
ζξ(K)ℚℓ) (via WE𝓅  Gal(E𝓅/E𝓅), see 1.l) need not be unra-
mified (that is, trivial on IE𝓅 or factorize through WE𝓅 → 
Gal (Eun

𝓅/E𝓅) = Gal(κ/κ)), therefore the action of a Frobe-
nius of WE𝓅 is not necessarily well defined, but it is on 
Hi

ét (S(K), ζξ(K)ℚℓ)ΙW𝓅, thus the local zeta function of 
(S(Κ), ξ) at 𝓅 could be defined by substituting this space 
in the co-homology formula of l.l.
   We expect that all the local zeta functions (as well as 
the remaining part of (14) for good p) can be expressed in
terms of L-functions of a form not very different from 
that of (14).
   The Hasse-Weil zeta function of (S(K), ξ) is the inverse 
product of the local zeta functions at all the finite places 
of Ε, and this should thus have an expression in terms of 
L-functions. However, in order to get a more appropriate 
form of this expression as well as a more appropriate 
form of the functional equation, which we expect the zeta
function to satisfy, we will multiply the Hasse-Weil zeta 
function by local "zeta functions" also at the infinite pla-
ces of Ε. We will define these local zeta functions, such 
that (14) remains true at infinity. After this we will make 
a bid for the final form of the expression of the zeta func-
tion in terms of L-functions and for the functional equati-
on.
   We can get an idea for the definition of the local zeta 
funtions at infinity by studying the cohomology formula 
for the local zeta function at a finite place where the re-
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duction is good. We do in fact observe that we obtain the 
same cohomology groups, if we first reduce V (ℤ/ℓnℤ) 
K/K0S(K0) → S(K) modulo 𝓅 - Gal(κ/κ) acts on these co-
homology groups and in the formula we interpret Φ𝓅 as 
the Frobenius in Gal(κ/κ). If we base change V(ℤ/ℓnℤ)K/

K0 S(K) → S(K) via an imbedding ν: Ε → ℂ (an infinite 
place), the corresponding sheaf over Sν(K)(ℂ) (= (S(Κ) 
νℂ)(ℂ)) appears by tensoring by ℤ/ℓnℤ a locally free 
sheaf of ℤ-modules over Sν(K)(ℂ) (see the final remark in
1.1). If we instead tensorize that sheaf by ℚ, we get a lo-
cally free sheaf of ℚ-vector spaces Fξ,ν(K) over Sν(Κ)(ℂ). 
We can define a representation ρ'i of Wν(E) on the ℚ-vector
space Hi(Sν(K), Fξ,ν(K))ℚℂ (rational cohomology) for i =
0, 1, ..., 2d (d = dimS(K)) by letting the action of ℂ be 
given by the Hodge structure (that is, by the product of 
the action z → z -pz-q on a subspace of type (p, q) and the 
action z →ν ξ◦τ h(z) on νVℂ in the notation below), if ν(E) 
 ℝ the complex conjugation on Sν(Κ) induces an action 
ι* on cohomology mapping a subspace of type (p, q) to a 
subspace of type (q, p), and the action of τ on such a sub-
space is taken to be (-1)pι* (οr if we like ip+qι*). By indu-
cing ρi' to Wℝ we get a representation ρi of Wℝ. This defi-
nition is motivated by the considerations below. The zeta 
function of (S(K), ξ) at the infinite place ν should nοw be 
defined by

Z(s, Sν(K), Fξ,ν(K))) = Πi=1
2d L(s, ρi)(-1)^(i+1)

(for the definition of the L-function L(s, ρ) for ρ a repre-
sentation of Wℝ see Ta).
   Sν(Κ) is conjectured to be the Shimura variety associa-
ted to νG, νX∞, νK defined in the following way: Lang-
lands has constructed an extension of the connected Serre
group S0 (denoted S in 3.1)
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S0 → S → Gal(ℚ/ℚ)

with a continuos splitting sp: Gal(ℚ/ℚ) → S(𝔸f) (see L5 
or MSl - the action of Gal(ℚ/ℚ) οn S0 defined by this 
extension is the algebraic action - S is the Serre group, 
that is, the ℚ-rational pro-algebraic group associated to 
the neutral Tannakian category CMℚ of motives over ℚ 
generated by the abelian varieties over ℚ of potential 
CM-type, the Tate object and the Artin motives (D3) - it 
is conjectured that for a motive in CMℚ the action of τ  
Gal(ℚ/ℚ) on the cohomology is given by the action (οn 
the representation space) of sp(τ)  S(𝔸f)). For τ  Gal 
(ℚ/ℚ) the extension defines an element c(τ)  H1(ℚ, S0) 
(by σ → a-1σ(a) if a  S(ℚ) maps to τ), the existence of 
the splitting implies that c(τ) is trivial at each finite place.
Let τ  Gal(ℚ/ℚ) be such that ν is the chosen imbedding 
Ε → ℚ composed with τ (recall that Ε is Galois), and let 
(T, h, 1) be a special point of S(K)(ℂ) (see 3.1). Let Tad be
the image of Τ in Gad, and let μad  X*(Tad) be the projec-
tion of μ = μh  X*(T), then (because Tℝ is fundamental in 
Gℝ) μad satisfies the Serre condition (τ - 1)(τ + 1)μad = 0 
for each τ  Gal(ℚ/ℚ) (ι is a non-trivial element in Gal 
(ℂ/ℝ)), therefore there is a unique ℚ-rational homomor-
phism χ: S0 → Tad, such that χ◦μ0 = μad (μ0 is the canonical
cocharacter of S0). The image of c(τ) in H1(ℚ, Gad) by χ 
defines an inner twisting νG of G which is trivial at each 
finite place and determined by (τμ - μ)(-1)  Τ(ℂ) at in-
finity, and νG is conjectured to be independent of the cho-
ice of τ and the special point. Τ is also a Cartan subgroup 
of νG, and if τh: S → Tℝ is the uniquely determined ℝ-ho-
momorphism for which μτh = τμ and νX∞ is the νG(ℝ)-con-
jugacy class of homomorphisms S → νGℝ containing τh, 
then νX∞ is independent of the choice of τ and the special 
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point, and νG, νX∞ satisfies the conditions for G, X∞ in l.l. 
If we let νΚ be the image of Κ by the canonical isomor-
phism G(𝔸f) →~ νG(𝔸f), the Shimura variety associated 
to νG, νX∞ and νΚ should be Sν(Κ). If we twist the repre-
sentation space V of ξ in the same way as G, we get a ra-
tional representation νξ of νG on νV, and the sheaf Fξ,ν(K) 
over Sν(Κ)(ℂ) is νV(ℚ)νG(ℝ),νξ

νG(𝔸)/νK∞
νΚ (νK∞ is the 

centralizer of τh in νG(ℝ)).
   By the theory of continouos cohomology we have

Hi(Sν(K)(ℂ), Fξ,ν(K))ℚℂ =  Hi(νg∞, νK∞, νξπ∞)πνK
f (*)

where the sum is taken over the irreducible representati-
ons π of νG(𝔸) which occur (discretely) in L2(νG(ℚ)Z(ℝ) 
ZK\νG(𝔸)) (of course only those for which the action of 
Z(ℝ) is given by the character ν-1 and the action of ZK is 
trivial and counted with multiplicity), νg∞ is the Lie alge-
bra of νG(ℝ)/Z(ℝ) and νK∞ = νK∞/Z(ℝ) (BW, VII, Theorem
5.2). The action of Wν(E) respects this decomposition (and 
is trivial on πνK

f).
   If φ  Φ(G)e contributes to (14), m(Π∞) ≠ 0, this implies
(since φ∞ is essentially tempered) that Π∞ is the L-packet 
of discrete series representations of G(ℝ) associated to 
one of the absolutely irreducible components of ξ˅. If this 
component is denoted ξ˅

Π∞ (so that the representations in 
Π∞ have the same infinitesimal character as ξ˅

Π∞), we ha-
ve m(Π∞) = (-1)d ∙ the multiplicity of ξ˅

Π∞ in ξ˅ (see 3.8). 
Such a φ belongs to Φ(νG)e for each (because φ∞ is ellip-
tic) and contributes to (*) but only to the middle cohomo-
logy (that is, i = d = dim S(K) - BW, II, Theorem 5.3 and 
5.4).
   Conversely, if φ  Φ(νG)e, it contributes at most to the 
middle cohomology of (*), and if it contributes, Π(φ∞) is 
one of the above 1-packets (BW, III, Theorem 5.l), there-
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fore m(Π∞) ≠ 0, and since φ  Φ(G)e, φ contributes to 
(14).

   The total tempered elliptic contribution to the zeta func-
tion at infinity is precisely the term ΠφΦ(G)e  ... of (14) 
where πp is replaced by ΠH

∞ = Π(ψ∞). This is an immedia-
te consequence of the equivalence of representations of 
Wℝ:

rH,i
ν◦ψ∞ = ǀ∙ǀd/2∙Ind(Wℝ, Wν(E), ρ'dǀHd(νg∞, νK∞, νξΠ∞π∞))

(sum over π  Πiη
ν,∞)       

 - rν is defined in the same way as r ,j𝓅  in 1.12, that is, cho-
ose τ  Gal(ℚ/ℚ), such that ν is the chosen imbedding 
composed with τ, since τ normalizes Gal(ℚ/E), 1τ  
LG0Gal (ℚ/ℚ) normalizes LG0Gal(ℚ/E), and if we re-
strict 0r◦ ad(1τ) to LG0Gal(ℂ/ℝ) (or if Ε is not real, to 
LG0 and then induce to LG0Gal(ℂ/ℝ)) and lift to LG0Wℝ,
we get rν, ǀ∙ǀ is the character z → zz of Wℂ or Wℝ. We shall
use that the multiplicity of π  Π(φ) (φ  Φ(νG)e) in L2 

(νG(ℚ) Z(ℝ)ZK\νG(𝔸)) is dφ ǀζφǀ-1 Σ <s, π> (sum over s  
ζφ) that rH,iǀLH0Wℝ = ν rH,i

ν and that <s, Πiη
∞> = <s, 

Πiη
ν,∞>).

[Proof of the above equivalence of representations of Wℝ 
- we use the terminology of l.12:
   We assume first that ν is the chosen imbedding. Let δ0 
be the half sum of the positive roots of T0 in G for the or-
der making Λ0  X*(LT0)ℝ dominant, and let γ0  X* 
(T0) be the highest weight of νξΠ∞ w.r.t. this order. Then Λ0

= γ0 + δ0.
   Let G(ℝ)• = T0(ℝ)Gder(ℝ)0 = Z(ℝ)G(ℝ)0. The represen-
tation π  Π∞ attached to λ  Ωλ is obtained by inducing 
to G(ℝ) the discrete series representation of G(ℝ)• atta-
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ched to λ. The restriction of π to G(ℝ)• is the direct sυm 
of the representations of G(ℝ)• attached to Ω(G(ℝ), T0(ℝ))
∙λ. For π ≠ π' these two sets of representations of G(ℝ)• 
are disjoint. The set of representations of G(ℝ)• attached 
to the set of characters Ωλ has the same cardinality as Ωμ. 
Α one-to-one correspondance is established by letting μ =
ωμh0 correspond to the representation attached to ω-1λ0 (= 
λ0∙ω).
   If φ∞(τ) = nτ (n  NormLG0(LT0)), we let ω = n∙LT0  Ω
(LG0, LT0 ), and for μ  Ωμ we let μ = ωμ, then μ = ι'μ and 
μ ≠ μ if Ε is real. The operator 0r(n) - denoted by u → nu -
transforms the weight space corresponding to μ to that 
corresponding to μ. If Ε is real and π• is the representation
of G(ℝ)• attached to λ  Ωλ, we let π• be that attached to 
ωλ (we note that ω  Ω(G(ℝ), T0(ℝ)) (MS2, Corollary 
4.3), therefore π• and π• induce to the same representation 
of G(ℝ)), if π• corresponds to μ then π• corresponds to μ.
   For μ  Ωμ let ℂμ be the restriction of 0r◦φ∞ǀWℂ to the 
weight space of 0r corresponding tο μ, and let ℂμℂμ be 
the representation of Wℝ given on Wℂ as ℂμℂμ and let τ 
act as μμ → ι(n) μnμ. Then we have
                           0r◦φ∞ǀWℂ ~  ℂμ (sum over μ  Ωμ)
and
                 r◦φ∞ ~ (ℂμℂμ) if E is real
                             (sum over μ  Ωμ/~, μ' ~ μ  μ' = μ)
                            (ℂμℂμ) if E is not real
                             (sum over μ  Ωμ).

   If we induce ℂμ to Wℝ, we get a representation on ℂμ 
ℂμ: z  ℂ acts as zz and τ acts as uu' → (-1)du'u. 
This representation is equivalent to ℂμℂμ (an equivalen-
ce is given by μμ' → μnμ'). Therefore, we have, if Ε 
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is not real:

                   r◦φ∞ ~ Ind(Wℝ, Wℂ, 0r◦φ∞ǀWℂ).

   If π• is the representation of G(ℝ)• corresponding to μ, 
ǀ∙ǀd/2 ρ'd Hd(g∞, K∞, ξΠ∞π•)ǀWℂ is equivalent to ℂμ, and if Ε
is real, ǀ∙ǀd/2 ρ'd Hd(g∞, K∞, ξΠ∞(π•π•)) is equivalent to 
ℂμℂμ (if the Cartan decomposition of g∞ determined by 
ad h0(i) is k∞p, then Hd(g∞, K∞, ξΠ∞π•) = HomK∞(dpℂ, 
ξΠ∞π•) and this space is one-dimensional (BW, II,Theo-
rem 5.3) of type (p, q) with p = d/2 - <μ, δ0>, and q = d/2 
+ <μ, δ0>, and the Hodge structure is given by z → z-p'z-q' 
with p' = d/2 - <μ, Λ0>, and q' = d/2 - <μ, ι'Λ0>. If Ε is re-
al, ι* maps Hd(g∞, K∞, ξΠ∞π•) to Hd(g∞, K∞, ξΠ∞π•), and 
if n  G(ℝ) represents ω  Ω(G(ℝ), T0(ℝ)), ι* is determi-
ned by the map on dpℂ given by ad(n) and the map ξΠ∞ 
π• → ξΠ∞π• given by (ξΠ∞π)(n), (π is π• (or π•) induced 
to G(ℝ)), this operator intertwines ξΠ∞π• and (ξΠ∞π•) 
◦(ad(n)).
   We conclude that
                       0r◦φ∞ǀWℂ ~ ǀ∙ǀd/2 ρ'dHd(g∞, K∞, ξΠ∞π)ǀWℂ

and if Ε is real
                    r◦φ∞ ~ ǀ∙ǀd/2 ρ'dHd(g∞, K∞, ξΠ∞π)

(sum over π   Π∞). By inducing in the first case for (Ε 
not real) we have in both cases

          r◦φ∞ ~ ǀ∙ǀd/2 Ind(Wℝ, WE, ρ'dHd(g∞, K∞, ξΠ∞π)).

   It is clear from the definition of the correspondance Ωμ 
↔ {π0} and of rH,i and Πiη

∞ that this equivalence respects 
our decomposition when restricting to LH0Wℝ.
   The formulas for ν, not the chosen imbedding, is now 
an immediate consequence of the fact that (Τ0)(ℝ) is also 
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a fundamental οf Cartan subgroup of νG(ℝ), and that if π• 
(as a representation of G(ℝ)•) corresponds to μ  Ωμ, then
π• (as a representation of νG(ℝ)•) corresponds to τμ  Ωτμ, 
if ν is the chosen imbedding composed with τ  Gal(ℚ/
ℚ).]

   Almost all the statements in the following are conjec-
tures - a reference is given, if the conjecture is not a fabri-
cation of mine.
   Let Π be a L-packet of representatiσns of G(𝔸), that is, 
Π is the restricted product over all places ν of ℚ of L-pac-
kets Πν of representations of G(ℚν), almost all Πν are de-
manded to contain an unique representation which con-
tains the trivial representation of Kν - we identify {πν}  
Π and ν πν. Π is automorphic, if some π  Π is automor-
phic. If some π  Π occurs (discretely) in L2(G(ℚ) Z(ℝ)\
G(𝔸)), then the same is true for every automorphic π  
Π. Π is cuspidal, if some π  Π is cuspidal, then every 
automorphic π  Π is cuspidal. Π is isobaric, if Π = Π (φ)
for some φ  Φ(G), then Π is automorphic (follows from 
the proposition of L4, if we have proved that Π(φ) is cus-
pidal for φ elliptic). Π is anomalous, if it is automorphic 
but not isobaric. For G = GL(n), Π is always singleton 
(Βο), and Π is isobaric, if it is cuspidal (conjecture Β of 
L5 and the conjecture (also of L5) that a tempered L-pac-
ket is of the form Π(φ), in fact, a cuspida1 representation 
of GL(n, 𝔸) is per definition isobaric in L5).
   Το every pair (M, Π0) (up to conjugation by an element 
of G(ℚ)) where Μ is a ℚ-Levy subgroup of G and Π0 is a 
cuspidal L-packet of representations of Μ(𝔸), we can 
construct a set Π(M, Π0) of automorphic L-packets of re-
presentations of G(𝔸): for each place ν of ℚ, the set
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{π ǀ ∃σ  Π0
ν: π is a constituent of Ind(G(ℚν), P(ℚν), σ)

(P some ℚ-parabolic subgroup of G containing Μ as a 
Levy subgroup)} is a finite union of L-packets of repre-
sentations of G(ℚν), Π0

ν lifted to G(ℚν) (via LMν  LGν (in 
the following we let LG denote LG0...) and the principle 
of functoriality) is one of these L-packets (the inductive 
property of the (conjectural) Langlands correspondance), 
and this satisfies the above condition for almost all ν, we 
can therefore form the restricted products of all combina-
tions of these local L-packets - every such (global) L-pac-
ket is automorphic (proved in L4). Every automorphic L-
packet belongs to Π(M, Π0) for some (M, Π0) (proved in 
L4), and the sets Π(M, Π0) are disjoint (conjecture Α of 
L5 for G = GL(n)). Π0 lifted to G(𝔸) is a L-packet in 
Π(M, Π0), it is denoted by Π(M, Π0). If Π is isobaric, then
Π = Π(Μ, Π0), where, if Π = Π(φ), Μ is the Levy sub-
group of G corresponding to the minimal relevant Levy 
subgroup LM of LG containing Im φ, and Π0 = Π(φM) for 
φM = φ regarded as mapping into LΜ (the definition of the
principle of functoriality). For G = GL(n), the isobaric L-
packet are precisely those of the form Π(M, Π0) (because 
Π0 is always isobaric).
   Α L-packet Π is tempered, if it is automorphic and each 
Πν is tempered, then Π is isobaric (L5) (the corresponding
φ is tempered and conversely) and the set Π(M, Π0) is 
singleton (= {Π}) (if an irreducible tempered representa-
tion of a (local) Levy subgroup is induced, the constitu-
ents should belong to the same L-packet).
   If the automorphic L-packet Π is isobaric, say Π = Π(φ)
for φ  Φ(G), we expect that the group ζφ = π0(Sφ /Z) and 
the pairing < , >: ζφΠ → ℂ control the automorphic re-
presentations π  Π: the multiplicity, with which π occur 
in the space of automorphic forms, is dφ ǀζφǀ-1 Σ <s, π>  
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(sum over s  ζφ), here dφ is the number of (global) equi-
valence classes in the local equivalence class containing 
φ. If Π is anomalous, Ι guess that the automorphic repre-
sentations in Π are controlled by a group of the same ty-
pe: we can find a φ (belonging to Φ(G') for some inner 
form G' of G), such that Π(φ) and Π are equal at almost 
all places and a pairing < , >: ζφΠ → ℂ having the above
property.
   According to the theory οf Arthur (A1) the L-packets Π 
which "occur" in the regular representation of G(𝔸) sho-
uld be parametrized by "admissible" homomorphisms φ: 
LℚSL2(ℂ) → LG in the same way as the isobaric Π are 
parametrized by admissible homomorphisms φ: Lℚ → LG,
however, different Π can be associated to the same φ, but 
these Π belong to the same set Π(M, Π0): the φ parametri-
zes some of these sets. The φ  Φ(G') associated to Π is 
in this case given by φ(w) = φ(w, dia(ǀwǀ½, ǀwǀ-½)), and the 
association φ → φ is injective. If φ  Φ(G), Π(φ) is asso-
ciated to φ (and is the isobaric L-packet (that is Π(M, Π0))
in the set Π(M, Π0) associated to φ, for G = GL(n), Π(φ) 
is the only L-packet associated to φ). Ιn the definition of 
admissibility it is required that φǀLℚ is essentially tempe-
red (for φǀSL2(ℂ) trivial, Π(φǀLℚ) is the (only) L-packet 
associated to φ). We let Φ(G) denote the set (of equiva-
lence classes) of Arthur parametres.
   There is a sign character εφ: ζφΠ → {±1}, and there 
should be a pairing < , >': ζφΠ → ℂ such that the mul-
tiplicity, with which π  Π occurs in the regular represen-
tation, is dφ ǀζφǀ-1 Σ <s, π>' (sum over s  ζφ). Π occurs dis-
cretely in L2(G(ℚ)Z(ℝ)\G(𝔸)) iff φ is elliptic. We let sφ 
denote φ(1(-1))  Sφ and its image in ζφ. Sφ is a sub-
group of Sφ and the homomorphism ζφ → ζφ is surjective 
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(and maps sφ to 1). We define a new pairing < , >: ζφΠ 
→ ℂ by <s, π> = ½(εφ(s) <s, π>' + εφ(ssφ) <ssφ, π>'), then 
the multiplicity formula reads dφ ǀζφǀ-1 Σ <s, π>  =  dφ ǀζφǀ-1 
Σ <s, π> (sum over s  ζφ, ζφ) (< , > should factorize 
through ζφ → ζφ).
   If φ  Φ(G) and s  Sφ, we can (in the same way as in 
1.14) construct an endoscopic datum (H, s, η) (up to iso-
morphism) and a ψ  GΦ(H) such that η(s) = s and η'◦ψ ~ 
φ. This construction determines an equivalence relatiσn ~
on Sφ : s ~ s' the  constructed (H, s, η) and ψ are the 
same. We let ζφ* = Sφ/~, this set is finite, and the projec-
tion Sφ → ζφ/conjugation should factorize through Sφ → 
ζφ*, thus we have a projection ζφ* → ζφ/conjugation. The 
same construction applies to φ  Φ(G), s  Sφ.
   If φ is associated to φ, we have an injection ζφ* → ζφ*. 
If φ  Φ(G)e (e = elliptic), ζφ = Sφ/Z, and this group and 
ζφ are abelian. The image of ζφ* =  ζφ in ζφ* is denoted 
(ζφ*)f.
   Proposition 11.3.2 of Κ3 (see 1.14) should remain true 
for φ  Φ(G)e, and also the (conjectural) considerations at
the end of that paper: if φ  Φ(G)e, its contribution to the 
trace Σπ~φ ΣπΠ mπ tr π(φ) (φ a function on G(𝔸)) can be 
stabilized as:

                    Σ(H,s,η)ℰ ι(G, H) ΣΠH ΣπΠH nπ tr π(φH),

here ΠH runs over the automorphic L-packets of represen-
tations of H(𝔸) which lift to some Π associated to φ, φH 
is a function on H(𝔸) connected with φ (see 3.7, in the 
formula there we must replace Φ(G)temp by Φ(G), Φ(H)temp

by Φ(H), <1, π> by <sψ, π>', <η(s), π> by <η(s)s φ, π>', 
and the summation must be taken over all ΠH resp. Π as-
sociated to ψ resp. φ) and nπ = dψ ǀζψǀ-1 εψ <sψ, π>' is the 
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stable multiplicity of π.
   Now Ι can state the complete form of the expression for
the zeta function in terms of L-functions:

        ΠΠ Πs(ζφ*)f (Πε{±1} (ΠiH(s) L(s - d/2, ψM, rε
H,i)b)a) (**)

                              a = ε m(Π0
∞) dφ ǀ(ζφ*)fǀ-1

                              b = ΣπfΠf  <s, Πiη,ε
∞πf> tr πf(φ)

(here and in some of the following formulas we should 
strictly speaking change the sign in m(Π0

∞), since we ha-
ve defined the zeta function as the inverse product of the 
local zeta functions). In the formula Π runs over the L-
packets of representations of G(𝔸) occuring (discretely) 
in L2(G(ℚ) Z(ℝ)\G(𝔸)) (and for which Z(ℝ) and ZK act 
as usual). φ ( Φ(G')) is associated to Π as above. Let φ 
 Φ(G)e be an Arthur parameter of Π, we can assume that
φ∞(Wℂ)  LT0Wℂ. The centralizer LM0 of φ∞(Wℂ) in LG0 
is a Levy subgroup (containing LT0), and if φ∞(z) = z Λzι'Λ 

z (Λ  X* (ZLM0)ℝ), Λ determines a parabolic sub-
group LP0 of LG0 with LM0 as Levy subgroup, φ∞(τ) deter-
mines an action of Gal(ℂ/ℝ) on LM0. If φ'M  Φ(M) para-
metrizes the "trivial" discrete series representation of 
M(ℝ), then φ0

∞: Wℝ →φ'M LM0Wℝ →a LG0Wℝ (a = id 
φ∞ǀWℝ) belongs to Φ(G'∞) (G'∞ quasi-split form of G∞). 
We can restrict our attention to those φ for which φ∞ and 
φ∞

0 are elliptic (and φ(1, {1 1 / 0 1}) is regular uni-potent 
in LM0), and we let Π0

∞ = Π(φ0
∞). Το φ and s  (ζφ*)f we 

construct a (H, s, η) and a ψ  Φ(H) as above. Define μh0 
 X*(LT0) as in 1.9 ((H, s, η) need not be elliptic at infi-
nity, but we can restrict our attention to those φ for which 
T0 can be chosen elliptic at infinity) and define μ0  X* 
(LT0) (from φ0

∞) as in 1.12, then η = (μ - μh0)(s) and ℋ(s) 
= {(μ - μ0)(s) ǀ μ  Ωμ} ( roots of unity). Α π∞  Π∞ (for 
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which <s, π∞>' ≠ 0 for some s  Sφ∞) is constructed from 
a Levy subgroup Μ of Gℝ and a parabolic subgroup Ρ of 
Gℂ containing Μ as Levy subgroup. We can choose a fun-
damental Cartan subgroup Τ of Gℝ contained in M and a 
h  X∞ factoring through Τ. The L-group of Μ is LM0 
Gal(ℂ/ℝ), in this construction we have chosen an isomor-
phism X*(T) ↔ X*(LT0) "transforming" Ρ to LP0. Το π∞ we
associate the element i' = (μ - μ0)(s)  ℋh(s) = {(μ - μh0)
(s) ǀ μ  Ωμ} (this is well defined), and this association 
determines a disjoint family of subsets Πi'∞  Π∞ (Πi'∞ can
be empty), we let Πi',ε∞ = {π∞  Πi'∞ ǀ μh(sφ) = ε}. We have 
a bijection ℋ(s) ↔ ℋh(s) given by i → i' = iη. If LM resp.
LMH is the minimal Levy subgroup of LG resp. LH contai-
ning Im φ resp. Im ψ, then sφ  ΖLM resp. ZLMH and sφ de-
termines a ±-decomposition of rǀLM  resp. rH,iǀLMH.
   The proof is an immediate generalizasion of step (l0)-
(14) in section 2: In (l0) we shall replace Φ(H)e by Φ(H)e, 
Π(ψ) by Σ (sum over ΠH ~ ψ) and <1, π> by εψ(sψ ) <sψ , 
π>'. m(Π∞) must be replaced by Σ Σ <sψ , π>' tr π(fG

ξ) (sum
over Π∞ ~ φ∞, π  Π0

∞), and this should be equal to <sφ∞, 
π∞>' μh(sφ∞) m(Π∞

0), where π∞ (arbitrary) is associated to 
φ∞. Α similar change of m(ΠH

∞). We note the generaliza-
tions of 3.6 and 3.7. In (14) we shall incorporate εφ(ssφ ) 
and Σ (sum over Π ~ φ) and replace <s, π>  by < ssφ , π>' 
(we use that εψ(sψ ) = εφ(ssφ )). We have a bijection {i  
ℋ(s) ǀ rH,i

ε ≠ 0} → {i'  ℋ(ssφ ) ǀ rH',i'
ε ≠ 0} given by i → i' 

= εμ0(sφ)i. Now the formula follows from the fact that 
rH,i

ε◦ψM = rH',i'
ε◦ψM' and

      ½(εφ(ssφ ) <s, Πiη
∞>' Σ <ssφ, πf>' tr πf(φ)    

      + (εφ(s) <ssφ, Πi'η'
∞>' Σ <s, πf>' tr πf(φ)

       = <sφ, π∞>' Σ <s , Πiη,ε
∞πf>' tr πf(φ)
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          (sum over πf  Πf),

where π∞ (arbitrary)  Πiη,ε
∞. Of course this "proof" works

only locally at primes p satisfying our conditions in this 
paper.
   Now we will compare this formula with a formula for 
the zeta function obtained from a decomposition of the 
étal cohomology parametrized by representations analo-
gous to that of the rational cohomology used in our proof 
of (14) at the infinete place.
   G(𝔸f) and so the Hecke algebra at H(G(𝔸f), Κ) (with 
coefficients in ℚ resp. ℚℓ) acts on Hi(S(K)(ℂ), Fξ(K)) and 
Hi

ét(S(K)(ℂ), ζξ(K)ℚℓ) (if g  G(𝔸f) and K' = K∩gKg-1, 
we have two morphisms S(K') → S(K) (defined over Ε) 
a) by right multiplication by g and b) by inclusion, these 
induce maps on cohomology:

Hi(S(K)(ℂ), Fξ(K)) → Hi(S(K')(ℂ), Fξ(K')) →
Hi(S(K)(ℂ), Fξ(K))

and
Hi

ét(S(K)(ℂ), ζξ(K)ℚℓ) → Hi
ét(S(K')(ℂ), ζξ(K')ℚℓ) →

Hi
ét(S(K)(ℂ), ζξ(K)ℚℓ),

the left maps because the inverse image by a) of Fξ(K) 
resp. ζξ(K) is Fξ(K') resp. ζξ(K'), the right maps because 
we have a map from the direct image by b) of ζξ(K') resp. 
ζξ(K) to Fξ(K) resp. ζξ(K)).
   The actions of H(G(𝔸f), Κ)ℚℓ and Gal(E/E) on Hi

ét 

(S(K)(ℂ), ζξ(K)ℚℓ) commute and lead to a decomposition

Hi
ét(S(K), ζξ(K)ℚℓ)ℚℓ = π Xi(π∞)W(πf)

(π as before), Xi(π∞) is a Gal(E/E)-module and depends 
on π, W(πf) is an irreducible H(G(𝔸f), Κ)ℚℓ-module. If we
choose an imbedding ℚℓ → ℂ and tensorize both sides, 
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we get the former decomposition of Hi(S(K), Fξ(K))ℚℂ 
(Xi(π∞)ℚℓℂ = Hi(g∞, K∞, ξπ∞) and W(πf)ℚℓℂ = πK

f), in 
fact, we have obtained the decomposition of Hi

ét(S(K), 
ζξ(K)ℚℓ)ℚℓ by first decomposing into irreducible H(G 
(𝔸f), Κ)ℚℓ-modules and then comparing it with the de-
composition of Hi(S(K), Fξ(K))ℚℂ.
   If the L-packet Π contributes to the above sum and π∞ 
Π∞, then if π = π∞πf contributes to the sum for some πf 
Πf, we expect that the Gal(E/E)-module Xi(π∞) is indepen-
dent of the choice of πf in Πf, hence we can define the Gal
(E/E)-module Xi(Π∞) = π∞Π∞  Xi(π∞) (depending οn Π).
   For every finite place ν of Ε we thus have (for ℓ ≠ ν) a 
λ-adic representation ρ'iν(Π∞) of WEν (via WEν → Gal(Eν/
Eν)) on Xi(Π∞) (Xi(Π∞) should be replaced by a vector 
space over some finite extension of ℚℓ), and for every in-
finite place ν οf Ε we have the former (complex) repre-
sentation ρ'iν(Π∞) of WEν on Xi(Π∞) ℚℓℂ. By inducing, 
we have a representation ρi

ν(Π∞) of Wℚν (ν the place of ℚ 
divided by ν).
   This decomposition of the cohomology imply:

     Z(s, S(K), ξ) = Πν Ππ Πj (Πν L(s, ρj
ν(π∞))dim πKf)(-1)^j

                          = ΠΠ Πs Πj Πi,ε (Πν L(s, ρj
ν(Πi,ε

∞))a)(-1)^j

                               (s  (ζφ*)f, i  ℋh0(s), ε = ±1),

where a = dφ ǀ(ζφ*)fǀ-1 Σπf  Πf <s, Πi,ε
∞πf> tr πf(φ)), and 

thus we should have (in order to deduce this we must in-
corporate a dependence of the Hecke algebra in the zeta 
function, see BL):

Ππ~φ Πj (Πν L(s, ρj
ν(Π∞)))

= L(s - d/2, φM, rε)ǀm(Π0∞)ǀ ((-1)d+j = ε),

if <1, π> ≠ 0 for some of the π associated to φ for which  
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μh(sφ ) = ε (π∞ → μh), here both sides should decompose in
accordance with i, that is, the subsets Πi,η

∞ of Π∞ and the 
constituents rH,i of r restricted to LH - we expect that if π∞ 
contributes to the cohomology of degree j, then (-1)d+j = 
μh(sφ ).
   The λ-adic reρresentation

π~φ  ρj(Π∞) ((-1)d+j = ε)

of Wℚ (via WE → Gal(E/E) and inducing) should thus 
correspond (locally) to the complex representation

ǀm(Π∞)ǀ∙ǀ∙ǀ-d/2 rε◦φM

of Lℚ (for this correspondance see Ta - at an infinite place
ρj(Π∞) must be defined as earlier and is actually complex  
- strictly speaking a λ-adic representation must be repla-
ced by its Φ-semi-simplificaton).
   If φ  Φ(G)e is such that an associated L-packet Π con-
tributes to Hi

ét(S(K), ζξ(K)ℚℓ)ℚℓ for some Χ∞ ( {S → 
Gℝ}), Κ and ξ, then the (λ-adic) representation π~φ j 

ρj(Π∞) ((-1)d+j = ε) of Wℂ should be the ǀm(Π0
∞)ǀ-fold of a 

representation ρφ,W∞,ε which should depend only on φ, Χ∞ 
and ε, but which should be independent of ξ and Κ, and 
this should correspond to the (complex) representation   
ǀ∙ǀ-d/2 rε◦φM of Lℚ (in particular dim ρφ,W∞,ε = dim rε) - we 
expect that m(Π0

∞) = (-l)d ∙ the multiplicity of the absolu-
tely irreducible constituent of ˅ξ having the same infinite-
simal (and central) character as Π0

∞. Otherwise stating: 
the (isobaric) representation of GL(n, 𝔸) (n = dim ρφ,W∞,ε)
corresponding to ρφ,W∞,ε (by the Langlands correspondan-
ce) should be ǀdetǀ-d/2 ∙ the representation of GL(n, 𝔸) (n =
dim rε) obtained by lifting the (cuspidal) L-packet Π0 = 
Π(φM') of representations of Μ'(𝔸) via rε: LM' → GL(n, 
ℂ), here LM' is the minimal (relevant w.r.t. G') Levy sub-
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group of LG containing Im φ, and Μ' is the Levy sub-
group οf G' corresponding to LM' (this is proved in Ll for 
G = GL(2) and π cuspidal, but only locally for some types
of πp - for this G the Shimura variety is not compact, so a 
generalization of our theory is necessary, see below, see 
also BL, HLR and Ra).
   The point is now that the dependence of this representa-
tion of GL(n, 𝔸) on the Shimura variety, that is on Χ∞, 
should be reflexed only in r (which is constructed from 
Χ∞), so that φ  Φ(G') should be independent of S(K) and
in fact should be the φ which we earlier have associated 
to Π.
   Since a L-function L(s, φ, r) is known to converge abso-
lutely for Re s sufficiently large, to extend meromorphic 
and to satisfy the functional equation L(s, φ',r) = ε(s, φ, r) 
L(l - s, ˅φ, r) (˅φ is the contragredient of φ, for the defini-
tion of ε(s, φ, r) and for a proof see Ta), the zeta function 
(which we have regarded as a formal power series) sho-
uld converge absolutely for Re s sufficiently large, extend
meromorphic and satisfy a functional equation, in fact, 
this functional equation seems to have the expected form 
Z(s, M) = ε(s, M) Z(1 - s, ˅M) (M is a motive over an al-
gebraic number field, and ^M is the dual motive, see Ta 
and D2):

Z(s, S(K), ξ) = ε(s, S(K), ξ) Z(1 - s, S(K), ˅ξ)

(M(d) = MΤd - the Tate object, thus Z(s, M(d)) = Z(s + 
d, M)). If M(S(K), ξ) is the motive associated to (S(K), ξ),
the motive which we here associate to (S(K), ξ) is i      
(-1)i+1Mi(S(K), ξ). We should have ˅Mi(S(K), ξ) =        
M2d-i(S(K)(d), ˅ξi) = Mi(S(K)(i), ˅ξ), and so the homo-
geneous functional equation
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Zi(s, S(K), ξ) = εi(s, S(K), ξ) Zi(i + 1 - s, S(K), ˅ξ).

The functional equation follows from the fact that (the 
global) ε(s, V) is additive and that we (by the above) have

ΠΠ~ω Πi ε(s, ρi(Π∞))(-1)^i ((-1)d+1 = ε)
= ε(s - d/2, φM, rε)ε m(Π0∞).

   If S(K) is not proper (that is, Gad is not anisotropic over 
ℚ), we can still easily define a zeta function. But a defini-
tion which is appropriate for an expression of the zeta 
function in terms of L-functions require some preliminary
work.
   If S (Κ) has "good" reduction at 𝓅, that is, if S𝓅(K) is 
defined and smooth, we have (by the Lefschetz fixed po-
int formula)

exp Σj=1
∞ ǀω𝓅ǀjs/j ǀS𝓅(K)(κj)ǀ

= Πi=1
2d det(1 - ǀω𝓅ǀs Φ𝓅ǀHi(S(K), ℚℓ))(-1)^(i+1).

The left hand side is clearly a ℚ-rational function of ǀω𝓅ǀs, 
but if S𝓅(K) is not proper, we can not any more prove that
the individual factors on the right have coefficients in ℚ. 
This fact is, hovever, in reality inessential for us, for other
reasons we have to choose another cohomology. In con-
trast to the compact case, the eigenvalues α of the Frobe-
nius action on the cohomology (being algebraic since the 
ℓ-adic polynomial has algebraic coefficients) need nο mo-
re be "pure", that is, satisfy logp ǀν(α)ǀ2  ℤ for every infi-
nite place ν of the solution field - this defect already ap-
pears for GL(2).
   It seems as if the cohomology used to define the zeta 
function ought to satisfy this purity condition. Also, we 
must demand that it have an appropriate decomposition 
parametrized by representations like that of the usual (ℓ-
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adic) cohomology for S(K) proper. The existence of such 
a cohomology would for instance allow us to prove the 
Ramanujan-Petersson conjecture for a L-packet Π occu-
ring discretely in L2(G(ℚ)Z(ℝ)\G(𝔸)): if Π∞ is discrete 
(and almost all Πp have a Whittaker model), then almost 
all Πp are (essentially) tempered.
   It is natural to choose a suitable compactification S(K) 
of S(K) and extend ζξ(K)ℚℓ to S(K)E, and to study the ima-
ge of the restriction map Hi

ét(S(K), ζξ(K)ℚℓ) → Hi
ét(S(K), 

ζξ(K)ℚℓ), or the image of the map Hi
ét,c(S(K), ζξ(K)ℚℓ) → 

Hi
ét(S(K), ζξ(K)ℚℓ) (c = compact support). The first coho-

mology is clearly ℚ-rational and pure, the second is pure, 
but the ℚ-rationallity is unknown. The Hecke algebra 
H(G(𝔸f), K) acts semi-simply οn both cohomology spa-
ces, they therefore possess a decomposition into irredu-
cible Hℚℓ-modules, but this decomposition need not come 
from a decomposition parametrized by representations.
   It seems as if the intersection cohomology IHi(S(K), 
ζξ(K)ℚℓ) (references in BL and HLR) is the adequate co-
homology for the definition of the zeta function: the pu-
rity seems present and is proved for S(K) proper, and it 
seems to have the correct decomposition property: we ha-
ve IHi(S(K), ζξ(K)ℚℓ)ℚℓℂ = IHi(S(K), Fξ(K))ℚℂ, and the
last space seems to be isomorphic to the L2-cohomology 
space Hi

(2)(S(K), Fξ(K)ℂ) (the conjecture of Zucker), but 
the L2-cohomology is isomorphic to the 𝑔-𝓀-cohomolo-
gy, and this seems also in the non-compact case to pos-
sess the decomposition parametrized by representations 
occuring discretely in L2(G(ℚ)Z(ℝ)\G(𝔸)).
   In Ll, BL and HLR the cases of Hilbert-Blumenthal va-
rieties are treated (G = ResF/ℚGL(2), F a real numberfi-
eld). Το define the intersection cohomology we let S(K) 
be the Satake-Baily-Borel compactification. This is not 
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smooth. S(K) and S(K) are defined over ℚ, and the fron-
tier S(K)∞ = S(K)\S(K) is finite. If Κ = Kn, S(K) is defined
over spec (ℤ[1/n]), and there is an open subset W of spec 
(ℤ[1/n]) such that S(K) restricted to W has a compactifi-
cation which after base-change by spec(ℚ) → W becomes
S(K), we can also construct a smooth compactification of 
S(K) over spec(ℤ[1/n]) which over W is a resolution of 
singularities of S(K).
   The expression (**)for the zeta function in terms of L-
functions should hold also in the non-compact case. In the
proof a non-elliptic part of the trace comes into play, that 
is, a part coming from other parabolic subgroups of G 
than G. This part is the contribution to the sum (l) from 
the frontier S𝓅(K)∞. For the above Shimura varieties this 
contribution is only non-zero for F = ℚ, the case studied 
in Ll.
   All the existing proofs of special (multidimensional) ca-
ses of formula (**) - where S(K) thus may be noncom-
pact, and where the reduction at p may be bad - have a lo-
ok like our proof in this paper. It is always assumed that 
S𝓅(K) exists for 𝓅ǀp and Kp is maxiιnal compact. Such a 
proof will, however, in this generality, strictly speaking, 
lead to an expression for the semi-simple zeta fιιnction in 
terms of semi-simple L-functions (precisely: Lss(s - d/2, 
ψM, rH,i

ε) - ψM must be replaced by ψM).
   The generalization of our proof can be outlined in the 
following way. We have a diagram:

                       S𝓅(K)E𝓅 →j S𝓅(K) i← S𝓅(K)κ

                            ↓                ↓              ↓           
                     spec(E𝓅) → spec(OE𝓅) ← spec(κ).

Let IC•(S𝓅(K)E𝓅, ζξ(K)ℚℓ) be the cochain-complex used to 
define the intersection cohomology, and let, for x  S𝓅(K)
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(κj), Trx,j be the alternating trace of the action of the Fro-
benius over κj on the inertia invariants in the sheaves i*H 
(j*IC• S𝓅(K)E𝓅, ζξ(K)ℚℓ)) on S𝓅(K)κ at the point x (the she-
aves of vanishing cycles - Gal(E𝓅/E) acts on these shea-
ves - it is conjectured that the inertia group acts through a 
finite factor group). Ιn formula (1) we must reρlace tr 
(Φ𝓅

j)x by Trx,j and sum over S𝓅(K)(κj). If we ignore the con-
tribution from the frontier S(K)∞ to the zeta function (or 
assume that it is zero, that is, Trx,j = 0 for x  S𝓅(K)∞ (κj), 
cf. the above remark), we can in formula (2) be content 
with replacing ǀ(Iφ)ε\(Yj

pYp)ǀ by Σ Tr0
x,j (sum over x  

A(φ, ε)(κj)), here Tr0 is Tr for ξ trivial and A is defined on 
p. ... f~

𝓅,n in formula (3) have to be defined in terms of 
Tr0

x,j (see Ra). Ιn order to get (12) we shall use that tr 
πp(fH

,j𝓅 ) = (1/j) ǀωjǀ-d/2 Σiℋ i ∙ [the semi-simple trace of the 
action of the j-th power of a Frobenius on the space of the
ℓ-adic representation associated to the representation 
˅rH,i

,j𝓅 ◦ψp: LℚpSL2(ℂ) → GL(Vi
r)].

   If we assume that "the monodrony filtration of IH• 

(S𝓅(K)E𝓅, ℚℓ) is pure" (a conjecture of Deligne, see Ra), 
then the proved expression for the semi-simple zeta func-
tion in terms of semi-sinple L-functions should imply our 
wanted formula (**).
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Appendix

Definition of 𝒲 and 𝒟

Let ν be a place (of ℚ), and let K be a finite Galois ex-
tension of ℚν, then we have an exact sequence

                           K → WK/ℚν → Gal(K/ℚν),

defined by a splitting dσ  WK/ℚν ( Gal(K/ℚν)), where 
dδdσdδσ

-1 = dδ,σ - a 2-cocycle in the fundamental class of K/
ℚν - dσkdσ

-1 = σ(k) for k  K. The sequence is determined
up to an isomorphism which in turn is determined up to 
conjugation by an element of K.
   If we choose an algebraic closure ℚν of ℚν containing 
K, we have, by forward and backward transform, a gerb

                      Gm(ℚν) → 𝒟K → Gal(ℚν/ℚν).

   For K  K' ( ℚν) we have a natural homomorphism
𝒟K' → 𝒟K (determined up to conjugation by an element of
Gm(ℚν)) given by x → x[K':K] (on the kernel) and d'σ → cσdσ

if (d'δ,σ)[K':K]/dδ,σ = cδδ(cσ)cδσ
-1, and therefore we have a li-

mit 𝒟ν = ←Klim 𝒟K. Of course 𝒟∞ = Gm(ℂ) → Wℝ  → 
Gal(ℂ/ℝ).
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Definition of ℒ and ζ: 𝒲∞ → ℒ, ζp: 𝒟p → ℒ and           
ζℓ: 𝐺ℓ → ℒ

Let p be a prime number. We choose algebrac closures ℂ 
of ℝ and ℚp of ℚp, and we choose imbeddings ℚ → ℂ and
ℚ → ℚp. Let L (  ℚ) be a finite Galois extension of ℚ, 
let ν~ be the place of L over ∞ defined by L   ℚ → ℂ 
and let 𝓅 be the place of L over p defined by L   ℚ → 
ℚp.
   Let m  ℕ and q = pm. The set

Y(L, m) = {π  L* ǀ 
       for each place ν of L over ∞ is ǀΠσ σπǀ[Lν:ℝ] = qa[L:ℚ]

                  for some a  ℤ (σ  Gal(L/ℚ))
       for each place ν of L over p is ǀΠσ σπǀ = qb

                  for some b  ℤ (σ  Gal(Lν /ℚp))
       for each place ν of L over ℓ ≠ p is π an unit}

is a subgroup of L and Y*(L, m) = Y(L, m)/{units in 
Y(L, m)} is a finitely generated free group on which Gal 
(ℚ/ℚ) acts. Let Q(L, m) be the corresponding ℚ-torus 

(that is X*(Q(L, m)) = Y*(L, m)), and let ν∞, νp  X*(Q 
(L, m)) be defined by
   <ν∞, χπ> = the a in the condition for ν = ν~

   <νp, χπ> = the b in the condition for ν = ,𝓅
for any π  Y(L, m) - here χπ is the character of Q(L, m) 
associated to π.
   We choose imbeddings of exact sequences
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                      L
ν~ → WLν~/ℝ →  Gal(Lν~/ℝ)  (∞)

                       ↓           ↓                  ↓
                      CL  →  WL/ℚ   →   Gal(L/ℚ)    (ℚ)
and
                       L

𝓅  → W /ℚpLL𝓅  →  Gal(L𝓅/ℚp) (p)
                        ↓           ↓                  ↓
                      CL   →   WL/ℚ   →   Gal(L/ℚ)   (ℚ)

And for ν = ∞, p and ν0 = ν~, 𝓅 we choose a set Sν of 
representatives in the cosets Gal(L/ℚ)/Gal(Lν0 /ℚν) (such 
that 1  Sν) and a section {ων

τ ǀ τ  Sν} of WL/ℚ → Gal(L/
ℚ) on Sν (such that ων

1 = l), and we define a splitting δ → 
ων

δ of (ℚ) by ων
δ = ων

τ dν
δ if δ = τσ (τ  Sν, σ  Gal(Lν0 /

ℚν ). If {Aν
δ,σ} is the 2-cocycle defined by this splitting, 

{A∞
δ,σ} and {Ap

δ,σ} are cohomologues, then A∞
δ,σ(Ap

δ,σ)-1 = 
Bδδ(Bσ)Bδσ

-1 for a 1-cochain {Bσ} in CL. χν  X*(Q(L, m)) 
is left fixed by Gal(Lν0 /ℚν), and we have

Σ σχ∞ (sum over σ  Gal(L/ℚ)/Gal(Lν~/ℝ))

= - Σ σχp (sum over σ  Gal(L/ℚ)/Gal(L𝓅/ℝ)).

If we let η denote this cocharacter of Q(L, m), the 1-co-

chain {Eσ} in CLX*(Q(L, m)) defined by

Eσ = (Π (A∞
σ,τ)στχ∞)(Π (Ap

σ,τ)στχp)Bη
σ

(product over τ  S∞, Sp)
satisfies

Eδδ(Eσ)Eδσ
-1 = D∞

δ,σDp
δ,σ,

where Dν
δ,σ  Πνǀν Q(L, m)(Lν) is defined by Dν

δ,σ = Πνǀν 
τ''((dν

δτ'',στ')χν), here τ, τ', τ''  Sν and δτ'', δτ'  Gal(Lν0 /ℚν ) 
are given by: τ is the element in Sν associated to ν (that is 
ǀτxǀν = ǀxǀν0), στ = τ'στ' and δτ' = τ''δτ'', τ'' denotes also the 
isomorphism Q(L, m)(Lν0) ↔ Q(L,m)(Lν'') defined by τ''.
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   Now if eσ  Q(L, m)(𝔸L) is a lifting of Eσ (with respect
to the projection Q(L, m)(𝔸L) → CLX*(Q(L, m))), we 
have

eδδ(eσ)eδσ
-1 tδ,σ = D∞

δ,σDp
δ,σ,

for a 2-cocycle {tδ,σ} in Q(L, m)(L), this 2-cocycle defines
an exact sequence

Q(L, m)(L) → ℒL
L,m → Ga1(L/ℚ)

with a splitting σ → tσ  ℒL
L,m (that is tδtσtδσ

-1 = tδ,σ), and 
{eν} defines a homomorphism ζν of exact sequences

                         L
ν0   →  WLν0 /ℚν  →  Gal(Lν0/ℚν)

                          ↓                 ↓                  ↓
              Q(L, m)(Lν0) → (ℒL

L,m)ν0 → Gal(Lν0/ℚν)

by χν on the kernel and dσ → (eσǀQ(L, m)(Lν0))tσ, and, for 
ℓ ≠ p and imbedding ℚ → ℚℓ, a splitting ζℓ of

Q(L, m)(L𝓅) → (ℒL
L,m)𝓅 → Gal(L𝓅/ℚℓ)

by σ → (eσǀQ(L, m)(L𝓅))tσ, here 𝓅 is the prime ideal of L 
defined by ℚ → ℚℓ.
   ℒL

L,m is uniquely determined up to an isomorphism 
which transforms these local homomorphisms into equi-
valent.
   By forward and backward transform we have a gerb

Q(L, m)(ℚ) → ℒL
m → Gal(ℚ/ℚ)

and local homomorphisms ζν: 𝒟 L
ν0 → ℒL

m (ν = ∞, p), ζℓ:
𝐺ℓ → ℒL

m (ℓ ≠ p).
   For L  L' ( ℚ) and mǀm' we have a homomorphism 
ℒL'

m' → ℒL
m transforming χ'ν to [L'ν''0:Lν0]χν (ν = ∞, p), the-

refore we have a limit ℒ ← L,mlim ℒL
m and local homo-

morphisms ζ∞: 𝒲 → ℒ, ζp: 𝒟 → ℒ and ζℓ: 𝐺ℓ → ℒ.
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Definition of ξ∞
μ: 𝒲 → 𝐺T and ξp

μ: 𝒟 → 𝐺T

Let ν be a place (of ℚ), and let ℚν be an algebraic closure 
of ℚν. Let T be a ℚν-torus which splits over the Galois ex-
tension L ( ℚν) of ℚν, and let μ  X*(T).
   We define a homomorphism ξμ of exact sequences

                   L    →    WL/ℚν     →      Gal(L/ℚν)
                    ↓               ↓ξμ                       ↓
                T(L) → T(L)Gal(L/ℚν) → Gal(L/ℚν)

by Σ σμ (sum over σ  Gal(L/ℚν)) on the kernel and dσ →
Π (dν

σ,δ)σδμσ (product over δ  Gal(L/ℚν)).
   By forward and backward transform we have a homo-
morphism of gerbs ξμ: 𝒟L → 𝐺T , and by going to limit we
have a homomorphism of gerbs ξμ: 𝒟ν → 𝐺T.
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Definition of ψμ: ℒ → 𝐺T 

Let T be a ℚ-torus which splits over the Galois extension 
L ( ℚ) of ℚ, and let μ  X*(T). For m  ℕ sufficiently 
large we define a homomorphism ψμ: Q(L, m) → T defi-
ned over ℚ in the following way: choose a  L such that 
(a) = 𝓅r (some r  ℕ) (𝓅 is the prime ideal of L defined 
by ℚ → ℚℓ) and ǀNmL𝓅/ℚpaǀ = q (= pm), then

γ = ΠσGal(L/ℚ)σ(a)σμ ( T(L))

belongs to T(ℚ), and for λ  X*(T), λ(γ) belongs to Y(L, 
m), therefore γ defines a homomorphism X*(T) → X* 
(Q(L, m)) which commutes with the action of Gal (L/ℚ), 
then ψμ is the homomorphism defined by this homomor-
phism of character groups.
   For k ( ℕ) sufficiently large we can find a section s of 
the projection χ: Y(L, m) → X*(Q(L, m)) on kX*(Q(L, 
m)) commuting with the action of Gal(L/ℚ), and for n ( 
mkℕ) sufficiently large we can find a δn  Q(L, m)(ℚ) sa-
tisfying χπ(δn) = s(kχπ)n/mk for every π  Y(L, m). δn is not 
uniquely determined, but χπ(δn)π-n/m is a unit for each π. 
{δn

j ǀ j  ℤ} is Zariski dense in Q(L, m)(ℚ).
   ψμ is characterized by ψμ(δmn) = γn modulo a unit.
   Now we will extend ψμ to a homomorphism of gerbs 
ψμ: ℒ → 𝐺T.
   If, for ν = ∞, p,

Eν
σ = Π Π (Aν

στ,δ)στδμ  CLX*(T)
(products over τ  Sν, δ  Gal(Lν0/ℚν))

and

F = Π B-δμ
δ  CLX*(T) (product over δ  Gal(L/ℚ)),
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then Eν
σ belongs to Πνǀv T(Lν) and we have

ψμ(Eσ) = eσ' Fσ(F)-1

where eσ' = E∞
σEp

σ
-1, and if f  T(𝔸L) is a lifting of F, then

ψμ(eσ) = sσ
-1eσ'fσ(f)-1,

where sσ  T(L). The 1-cochain {sσ} satisfies sδδ(sσ)sδσ
-1 =

ψμ(tρ,σ) and we define the remaining part of ψμ (on ℒL
L,m) 

by tσ → sσσ. By going to limit we have a homomor-
phism ψμ: ℒ → 𝐺T of gerbs, it is determined up to compo-
sition with an automorphism of 𝐺T which is locally equi-
valent to the identical automorphism.
   We have equivalences

ψμ◦ζ∞ ~ ξ∞
μ, ψμ◦ζp ~ ξp

-μ and ψμ◦ζℓ ~ ξℓ (ℓ ≠ p),

because

   e'σǀT(Lν~) = Π (A∞
σ,δ)σδμ (product over δ  Gal(Lν~/ℝ))

   e'σǀT(L𝓅) = Π (Ap
σ,δ)-σδμ (product over δ  Gal(L𝓅/ℚp))

   e'σǀT(L𝓅) = 1 for 𝓅ǀℓ, ℓ ≠ p.

92



Definition of  and ℒ → 

If we in the definition of Y(L, m) figuring in the defini-
tion of ℒ replace the quantity

ǀΠ σπǀ[L:ℚ]^(-1) (product over σ  Gal(L/ℚ))

by                          
ǀΠ σπǀ[Lν:ℚ]^(-1) (product over σ  Gal(Lν/ℚ)),

and in the definition of Y*(L, m) replace

{unity in Y(L, m)} by {roots of unity in Y(L, m)},

then we get a new exact sequence and a homomorphism:

Q(L, m)(L) → ℒL
L,m → Gal(L/ℚ)

                             ↓                ↓             ↓
                     P(L, m)(L) → ℘L

L,m → Gal(L/ℚ),

and by forward and backward transform and then going 
to limit, we get a gerb  and a homomorphism ℒ → ℘.
   A homomorphism ψμ: ℒ → 𝐺T as above factorizes thro-
ugh ℒ → ℘, if µ  X*(T) satisfies the Serre condition:

(σ - l)(ι + 1)μ = (ι + l)(σ - 1)μ = 0

for each σ  Gal(L/ℚ) (ι is the non-trivial element in 
Gal(ℂ/ℝ)).
   The elements δn  P(L, m)(ℚ) (n sufficiently large mul-
tiple of m) are now uniquely determined and χπ(δn) = πn/m 
for π  Y(L, m), also ψμǀP(L, m)(ℚ) is characterized by 
ψμ(δn) = γn/m.
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