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Foreword

When the era of digital pictures began, a serious problem arose:

        A digital picture took up a great deal of storage space.

At that time memory had to be economized on. Moreover, the 
electronic transmission of data was slow. A method had to be 
found by which the data could be compressed, possibly in a way 
that would allow small changes in colour values. Sadly the solution 
to this problem is not, as one might hope, a nice piece of 
mathematical work in the classical sense. It involves experiments 
with the ability of the human eye to discern colour nuances 
compared with light intensity. Strange tables appear in the 
procedure.

The JPEG method was a result of collaboration. JPEG stands for "Joint
Photographic Expert Group". The expert group was organized in 
1986 and in 1992 issued a standard for their new image file format, 
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JPEG. Since that time this format has been the most commonly 
used format for storing and transmitting photos.

The JPEG method is not difficult to understand. However, it is 
difficult to acquire knowledge about the method, mainly because it
is not a fixed and final procedure but rather a principle. The 
number of articles that try to explain the method is immense. They
often contain misunderstandings strongly suggesting the author 
himself has not made, or closely studied, a program that can 
produce a file or draw the picture from a file.

Hence this book.

Parts One and Two

This book is divided into two parts. Each is accompanied by 
programs. These are closely described and used to make 
illustrations and experiments.

Part one explains the idea. We have altered the method a little so 
that it is easier to understand. Our alterations allow us to introduce
variables in order to make interesting experiments. Our method is 
rather simple. Naturally, it does not compress as efficiently as the 
real JPEG method, but it is still surprisingly good. It can compress a
file so that the data take up about 7 per cent of the original data of 
the picture. When you have read part one, you will have a good 
understanding of the principle of the JPEG method. If it was merely
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this you were looking for, you will not become very much wiser by 
reading part two.

Part two is based on two articles:

        1.  The official document (from 1992) where the method is 
described in full and recommended as international standard;

        2.  The document (also from 1992) specifying the standard for 
the implementation of the method which has become the most 
commonly used - almost all JPEG pictures you will meet are in 
accordance with this implementation.

We explain all the things necessary for making a program that can 
produce efficiently compressed JPEG files. We provide a program 
that can draw the pictures of the most commonly used JPEG file 
types. We have also made a program that can show all the most 
relevant information in the header part of a JPEG file. Some 
experience with this program can help you to understand the 
arrangement of a JPEG file. You can use this information (copy it or
use it as guidelines), if you want to make your own JPEG 
compressor - for instance as a component of a program that can 
make computer graphics.
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About the Pictures

All the pictures in this book were made with the program in part 
two - also those in part one, since the files made with the 
demonstration program are not true JPEG files.
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The colour components

The BMP format

In the computer a colour is given by its composition of the three 
primary colours red, green and blue, and their shares are measured 
in bytes, that is, integers from 0 to 255. Therefore a colour 
corresponds to a triple of bytes, called a RGB triple. A picture is a 
rectangular matrix of RGB triples. If the picture is of width w and 
height h, the colour values (RGB triples) are indexed by the pairs  
(i, j), i = 0, ..., w-1, j = 0, ..., h-1, so that the left top corner has 
coordinate set (0, 0)(that is, the ordinate is measured downwards). 
The picture takes up 3wh bytes, and it can be stored in a memory-
block by storing the h horizontal lines consisting of 3w bytes one 
after another. The procedure for showing the picture by 
transferring the memory-block (directly) to the screen is called a 
bitmap.

(In the bitmap procedure of Windows it is demanded that the 
number of bytes in the horizontal lines is divisible by 4, this means 
that the line segments of the memory-block possibly must be 
increased by 1, 2 or 3 bytes, usually filled with zeros.)

A picture can be stored permanently in a file consisting of the data 
bytes arranged in this way and supplied with a header specifying 
the type of the file and the dimensions of the picture. This is so for 
the BMP file format of Windows (BMP = Bit Map Picture). A BMP file 
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begins with a header of 54 bytes. As the data in a BMP file lie 
precisely in the way used to draw a bitmap, the picture can be 
drawn directly from the reading of the file - without involving 
RAM-memory and without the use of other than elementary 
arithmetic calculations.

(The header of a BMP file is divided up in 17 blocks consisting of 
one, two or four bytes. Two bytes determine an integer from 0 to 

2562 - 1 = 65535, called a word, and four bytes determine an integer 

from 0 to 2564 - 1 = 4294967295, called a double word. The first two 
blocks of the BMP header are the bytes 66 and 77, identified with 
the characters 'B' and 'M' and specifying the type of the file. Block 
8 and 9 are double words stating the width and the height, block 10
and 11 are words, usually set to 1 and 24 (= bit per colour), 
respectively, and block 7 is a double word usually set to 40. The 
other blocks, except block 4 and 5, which are words, are double 
words, and all these blocks can be set to 0, as they usually are not 
read by the program reading the file.)

Data compression

The BMP file format and a memory-block to be transferred to the 
screen as a bitmap are easy tasks for the computer and for the 
programmer, but these ways of storing a picture take up a lot of 
memory: a picture of 1000x750 pixels takes up 3x1000x750 = 2.2 
Mb. This can be accepted provisionally in the working-up 
procedure of a picture or for storing of relatively few pictures 
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where the highest possible quality is desired, but so much space is 
unacceptable in folders with hundreds of pictures or in films or in 
transmissions from the internet. One would immediately think that
it is impossible to get digitalized data to take up lesser space, 
because the material with the bits cannot be reduced like a 
photographic negative. But a digitalized data set consists of 
sequences of bits, and these can be replaced by sequences that are 
shorter - and if there are repetitions, the thing that repeats itself 
can be replaced by a sequence which acts as a symbol for its type 
and the number of repetitions. If the data are copies of the 
elements in some fixed set (of numbers, for instance), then we can 
assign to the elements of the set sequences of bits such that the 
elements which are used most frequently are assigned to the 
shortest sequences. Besides, if the elements of the data set are 
numbers of strongly varying size, we can, instead of allocating 
equal space to each number, try to remove the empty spaces 
between the numbers. This cannot of course be done without 
ceremony, since (in lack of a third bit) we must have a tool with 
which we can separate the sequences of bits corresponding to the 
numbers. However, we can insert sequences of bits acting as codes.

Only a non-negative integer can immediately be digitalized, 
namely by writing its binary digit expression:

n = cm2m + ... + c222 + c12 + c0
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- where c0, ..., cm are bits: 0 or 1 - we order the sequence so that the

most significant bit comes first. If the number is rational or real, 
we must in some way express it as the composite of two non-
negative integers. The codes to be inserted can be chosen so that 
they are in one-to-one correspondence with the natural numbers, 
and such that the natural number assigned to a code is the number 
of digits of the following non-negative integer. The codes must be 
chosen so that the most frequently used natural numbers (stating 
number of digits) have the shortest codes, and moreover so that we
can determine when a code ends.

When the data are to be used (in order to show a picture, for 
instance), the compressed data set is subjected to a decoding 
procedure, leaving a data set that is exactly as the original. In 
almost all image file formats there is a possibility for compressing 
the data in this way. Such tricks are of course used in the JPEG 
procedure, but in this procedure the data are modified before the 
compression: by first transforming the colour values and then 
reducing the new values by dividing them by certain numbers and 
rounding off. The last procedure is called quantization and it may 
introduce (small) deviations.

The RGB values

The basis colours are the pure colours, these are the "strongest" 
colours which have maximum saturation. The pure colours make up
a cyclic colour scale:
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Therefore a pure colour is determined by an angle. Every colour 
different from a grey scale colour is the result of mixing a uniquely
determined pure colour with a grey scale colour. The pure colours 
are not of the same luminance: three of them have lesser luminance 
than the others, and these are the primary colours: pure red, pure 
green and pure blue, assigned to the angles 0, 120 and -120 degrees.
A pure colour that is not primary lies between two primary 
colours, and is the result of mixing the nearest of these with part of
the other. If we mix the three primary colours, we get white - the 
colour of maximum luminance. From this we can see that every 
colour is produced by mixing the three primary colours, each made
more or less darker. This is the RGB representation. We usually 
measure the three amounts in bytes, so that 255 corresponds to the
primary colour and 0 corresponds to black.

(We can find the pure colour associated to the colour C (different 
from a grey scale colour) in the following way: By subtracting the 
RGB values of C from white, we get the colour C' with RGB triple 
(255-R, 255-G, 255-B). If we assume that blue has most share in this 
colour, then C' =  C'', for some  β β ≤ 1 and a colour C'' for which 
blue has share 255. By subtracting C'' from white, we get a colour 
C''', and if we assume that red has most share in this, then C''' =  α
C'''', for some  α ≤ 1 and a pure colour C'''', for which red has share 
255 and blue has share 0. This is the pure colour associated to C, 
and we get C by mixing this pure colour with black according to  α
and with white according to .)β

14



The YCbCr values

There is, however, a drawback to the RGB representation of the 
colours: the three values are of equal significance. We would prefer
a triple representation were one of the values (the first) was more 
significant than the two others, because then, in the quantization 
procedure, we could allow larger deviations in the two less 
significant components. Such a representation is easy to imagine, 
as the four pictures below show: we can let the first value in the 
triple be the average value of the three RGB values, thus expressing
the intensity of the colour (and giving the corresponding grey 
scale picture), and let the two other values form the "colour 
additions". We imagine the colours (the RGB triples) as the integral
points in a cube of side length 256, having the three positive 
coordinate axes as sides, and its origin in the corner corresponding
to black. In this cube the grey scales lie on the diagonal, and we 
take the diagonal as the first axis. We could let the two other 
coordinate axes be orthogonal to the diagonal and to each other, 
but in order to get a simple transform, we let them lie in the B-G-
plane and the R-G-plane. Note that the new coordinate system 
means the two last colour values can be negative. We choose the 
units such that the first coordinate is measured in bytes and the 
two others are measured in signed bytes: integers from -128 to 127. 
The new coordinate triple is connected with the RGB triple by a 
linear transform.

We call the new representation the YCbCr values of the colour. Y 
stands for luminance (or luma) and C stands for chroma: Cb for 
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chromatic blue and Cr for chromatic red. Our assumptions mean that 
there are parameters kb and kr, such that the linear transform and 
its inverse are given by:

Y = kr∙R + (1 - kr - kb)∙G + kb∙B

Cb = ½(B - Y)/(1 - kb)

Cr = ½(R - Y)/(1 - kr)

R = Y + 2(1 - kr)∙Cr

G = Y - (kb∙(B - Y) + kr∙(R - Y))/(1 - kb - kr)

B = Y + 2(1 - kb)∙Cb

We see that if a colour is a grey scale colour, that is, if R = G = B, 
then Y is this number and Cb and Cr are zero. Mathematically, it 
would be natural to set kb and kr to 1/4, because the transform 
then would get a simple and natural form:

Y = R/4 + G/2 + B/4

Cb = -R/6 - G/3 + B/2

Cr = R/2 - G/3 – B/6

R = Y + (3/2)Cr

G = Y - (3/2)(Cb + Cr)/2

B = Y + (3/2)Cb
16



However, in the JPEG implementation - which we are guided by 
here - the parameters kb and kr are set to 0.144 and 0.299, and with
these values the formulas become:

Y = 0.299∙R + 0.587∙G + 0.114∙B

Cb = -0.168736∙R - 0.331264∙G + 0.5∙B

Cr = 0.5∙R - 0.418688∙G - 0.081312∙B

R = Y + 1.402∙Cr

G = Y - 0.3441∙Cb - 0.71414∙Cr

B = Y + 1.772∙Cb

This means that the coordinate axes are: the diagonal, the line       
(-0.34, 1.77) in the G-B-plane and the line (1.40, -0.71) in the R-G-
plane. As the two chromatic coordinates range in the interval         
[-128, 127], we must add 128 to them in order to get bytes, so that 
we can draw "projections" of the picture on the coordinate axes. 
Instead of the composition of the picture in pictures in red-, green-
and blue-scales, we now get pictures in grey-scale, blue-green-
scale and red-green-scale:
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As we want our numbers (integers) numerically as small as 
possible, we subtract 128 from the Y value, so that this, like the Cb 
and Cr, becomes a signed byte.
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The transform and quantization

The cosine transform

With the YCbCr representation of the colours, we can say that the 
picture is composed of three pictures of which the first is more 
significant than the two others. These three pictures are called the 
components of the picture: the Y component, the Cb component and
the Cr component. But we can continue this process of getting few 
important and more less important elements. Let us assume that 
we have a picture in grey scale, then we can imagine that we start 
with a picture of only one colour, namely the average colour of all 
the colours in the picture, and by additions introduce more and 
more variation in the picture, so that at the end we have the 
complete picture. Then it would possibly turn out, that we could 
omit some of the last operations, as we were not able to distinguish
the new additions. However, the expansion (which we have in 
mind) of the colour function in a sequence of terms having smaller 
and smaller importance, works only for a quadratic picture. 
Therefore our picture must be divided up in squares. And these 
squares must be rather small, because the number of calculations 
grows with the fourth power of the side length of the squares, 
which means that if the small squares are made twice as large, the 
number of calculations becomes four times as large. On the other 
hand, if the small squares are too small, the effect of the procedure 
is diminished. The optimal side length of the small squares seems 
to be 8-12 pixels. In JPEG the picture is divided up in 8x8-squares, 
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but here we will see what happens if we let the squares have 
another side length than 8: we have arranged the program so that 
we can choose one of the numbers 2, 3, ..., 24 as side length s.

Thus, we perform a regular dividing up of the picture in sxs-
squares. In JPEG this is done by starting at the left top corner and 
going from left to right line-wise from top to bottom, just as when 
we read a text. In our program for demonstration of the theory, we
will however go through the picture in another way, namely 
coloumn-wise from left to right and zigzagging down and up, so 
that the squares continually have a side in common. We will 
assume that the width and the height of the picture are divisible by
s, or rather: we will only use the part of the picture lying within 
the largest domain (starting at the left top corner) which can be 
divided regularily up in sxs-squares. The method we use to expand 
the colour function within a square, is the discrete cosine transform 
(DCT) defined as follows.

We assume that we have a quadratic picture (in grey scales) of side 
length N, and we assume that N is rather large, so that we can talk 
about a "real" picture. This picture is a NxN-matrix of colour 
values (bytes): f(i, j), i, j = 0, 1, ..., N-1 (remember that (0, 0) 
corresponds to the left top corner, so that the ordinate j is 
measured downwards). We want to express f(i, j) in terms of pure 

double oscillations of the form fu, v(i, j) = c(i, u) ∙ c(j, v), u, v = 0, ..., 

N-1, where the function c(i, u) is given by:
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c(i, u) = cos((2∙i + 1)uπ/(2N)).

Note that f0, 0(i, j) is constant 1 and that the function fu, v(i, j) 

oscillates more the larger u or v are. We therefore want to express 

f(i, j) as a double sum of N2 terms:

f(i, j) = ∑u, v = 0, ..., N-1h(u, v) ∙ c(i, u) ∙ c(j, v)

where the h(u, v)'s are (real) coefficients. The first term (u = 0 and 

v = 0) being a constant function is the average value of the N2 
numbers f(i, j). The following terms oscillate more and more (as 
functions of i and j), and if we omit some of the last terms, we get 
an approximation to f(i, j) that is free from the largest frequencies.

We can find the coefficients h(u, v) of this series expression of f(i, j)
in the following way. Let the NxN-matrix (of real numbers) g(u, v) 
(u, v = 0, 1, ..., N-1) be defined by:

g(u, v) = (2 (u) (v)/N)∑λ λ i, j = 0, ..., N-1c(i, u) ∙ c(j, v) ∙ f(i, j)

where (u) is 1 for u ≠ 0 and 1/√2 for u = 0. The matrix g(u, v) is λ
called the (forward) discrete cosine transform (DCT or FDCT) of the 
matrix f(i, j). Note that g(0, 0) = N times the average of the colour 
values. There is a formula which, from the NxN-matrix g(u, v), 
brings us back to the original NxN-matrix f(i, j), and it has an 
analogue look:
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f(i, j) = (2/N)∑u, v = 0, ..., N-1 (u) (v) ∙ c(i, u) ∙ c(j, v) ∙ g(u, v)λ λ

As this formula has the desired form for the series expansion of f(i, 
j), we see that the expansion is possible and that the coefficients 
h(u, v) are given by h(u, v) = (2 (u) (v)/N) g(u, v). This formula for λ λ
getting f(i, j) from g(u, v) is called the inverse discrete cosine 
transform (IDCT).

That the two formulas are inverse to each other, is easy to see if we
take this formula, in which  and  are α β odd integers, for granted:

1/2 + ∑u = 1, ..., N-1cos( uπ/(2N)) ∙ cos( uπ/(2N)) = 0α β

 for  ≠  and N/2 for  = α β α β

Now let us set N = 280, for instance, so that we consider a (grey 
scale) picture of 280x280 pixels. We transform the colour values f(i,
j) (which are bytes), and from the transformed values g(u, v) 
(rounded off to integers which can be negative) we construct a 
picture, now in colours, because the numbers vary a lot and 
therefore cannot be measured in bytes. The new picture (also 
280x280 pixels) could look like the picture to the left:
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After the transform, the "colour" values (in this example) vary 
from about -6000 to 24000, and the colouring is performed by a 
little trick: we have subtracted the minimum value from the 
values, so that they become non-negative, multiplied by 65535/ 
(max - min) and rounded off, getting whole numbers from 0 to 

65535 = 2562 - 1. An integer in this interval can be written in the 
form a + 256xb, for bytes a and b, and to these we can associate the 
RGB triple (0, b, a), for instance (the numbers min and max must be
introduced in the program which reconstructs the picture, but this
can be done by writing them in some of the free entries in the 
header of the BMP file). The picture to the right above is the 
reconstructed picture.

If, in the reconstruction procedure, we remove the terms for u > N/
2 or v > N/2, so that we only make use of the mean fourth of the 
terms, we get a picture that is almost as the original - only a little 
blurred:
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However, in the JPEG procedure terms are not actually removed: 
the coefficients are replaced by approximations of whose those for 
the high frequencies can deviate more from the original 
coefficients than those for the low frequencies. It is in this way the 
quantization procedure is carried out.

Now to the (colour) picture divided up in small sxs-squares. After 

the cosine transform, we have s2 numbers for each sxs-square and 
for each component (of the colour picture). From these numbers 
we can reconstruct the picture, and it is these numbers we are 
going to write in the file, after compressing. But if we did this 
without quantization (that is, without making the numbers 
numerically smaller in some way), we would have gained nothing 
by the cosine transform. Besides the quantization, to be explained 
below, we can do another thing which makes some of the values 
smaller and which has a good effect: we can replace each first term
of the transformed values (the average value g(0, 0)) by its 
difference from the preceding first term of the same type (that is, 
for the preceding square for the same component). The first term 
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g(0, 0) of the matrix g(u, v) (u, v = 0, ..., s-1) is called the DC term, 

and the others s2-1 terms, g(u, v), u > 0 or v > 0, are called the AC 
terms. Thus, we replace each of the DC terms (for a given sxs-
square and component) by its derivation from the DC term of the 
preceding sxs-square (and the same component).

Quantization

Without the quantization procedure, the only source of loss of 
information would be rounding off of real numbers in order to get 
integers. As the mean numbers (g(u, v) for u or v near 0) are rather 
large, these errors are not significant: if we make the file now (that 
is, with cosine transform but without quantization) and apply a 
compression procedure (which is lossless), the picture which we 
can reconstruct from the file will be almost undistinguishable from
the original, but it will still take up too much space. It is the 
quantization procedure that brings the size down and introduces 
deviations. By quantization we understand the procedure of 
making the coefficients of the expansion of f(i, j) in pure double 
oscillations, that is, the numbers g(u, v) from the cosine transform, 
smaller by dividing them by numbers q(u, v) depending on (u, v) 
and then rounding-off to integers. When the picture is to be drawn 
from the file, we multiply by the numbers we have divided by. If 
for instance g(u, v) = 135.6 is divided by q(u, v) = 36 and the result is
rounded off, we get 4, and when we multiply 4 by 36, we get 144. 
We have then introduced errors which could be insignificant, since
they are not errors in the colour values but in the cosine 

25



transformed numbers, and the main terms, the g(u, v)'s for u and v 
near 0, are quantized by much smaller numbers q(u, v) than the 
less important terms, the g(u, v)'s for u or v not near 0. 
Furthermore, as the numbers for the Y component have more 
significance than the numbers from the Cb and the Cr component, 
the cosine transformed numbers for these can bear to be quantized
by larger numbers q(u, v).

The 8x8-matrices q(u, v) (u, v = 0, ..., 7) of the quantization 
numbers for the Y component and the two colour components 
used in the JPEG procedure are chosen according to experiments. 
Consequently, there are several bids for such tables. In part two you
can see some typical tables. Well chosen numbers mean that we 
can compress more without damaging the picture, but we will 
always meet situations where a part of the picture has disturbing 
flaws that forces us to choose smaller quantization values. Usually 
a quality factor qf is introduced in the program that makes the file, 
so that the quantization numbers can be adjusted. For instance, we 
can arrange the dependence so that best possible quality - qf = 100 
- means that there is no quantization (all the quantization numbers
are set to 1), and that qf = 75 means that the given quantization 
table q(u, v) is used. The table q(u, v) and the quality factor qf are 
applied again when the picture is drawn from the file. The quality 
factor must of course appear in the header of the file, whereas the 
tables only need to be in the programs that produce the file and 
draw the picture.
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In our program we must have quantization tables for varying side 
length of the small squares (from 2 to 24), and we must therefore 
construct the tables mathematically - as simple as possible. We 
first choose the q(u, v) values for qf = 75, and then find a formula so
that all become 1 for qf = 100. Guided by the tables shown in part 
two, for qf = 75, we choose the following values for side length s and
for the Y component and the colour components, respectively:

q(u, v) = (s/8)∙12∙(1 + 4∙√(u2 + v2)/ s)

q(u, v) = (s/8)∙20∙(1 + 5∙√(u2 + v2)/ s)

We arrange the program so that we can have different quality 
factors for the Y component and the colour components. We adjust
the numbers q(u, v) according to qf in this way:

1 + 4(q(u, v) - 1)(1 - qf/100)

(Which for qf = 0, 75, 100 is respectively 4q(u, v)-3, q(u, v) and 1.)

The left picture below (for side length s = 8) is without quantization
(qf = 100), and the file takes up 60 per cent of the original BMP file. 
In the picture to the right qf = 70, and the file now takes up only 6 
per cent of the original:
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When we put the matrix of the quantization table and the matrix 
of the cosine transformed and quantized numbers into the file, we 
must arrange these numbers linearly in some way. We do this in 
such a way that the most important ones (those for u and v near 0) 
come first, namely by applying this zigzag principle:

 

If s is the side length of the square, then the zigzag value m (= 1, 

2, ..., s2) corresponding to the point (i, j) (i, j = 0, 1, ..., s-1) can be 
calculated with this program:
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    k = i + j

    if k < s then

      begin

        l = (k * (k + 1)) div 2

        if k mod 2 = 0 then

          m = l + i + 1

        else

          m = l + j + 1

      end

    if k = s then

      m = (s - 2) * (s - 2) + i

    if k > s then

      begin

        k = 2 * s - 1 - k

        l = s * s - (k * (k + 1)) div 2

        if k mod 2 = 0 then

          m = l + (s - i)

        else

          m = l + (s - j)

      end
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The compression and encoding

The compression of the file

For each sxs-square and for each of the three YCbCr coordinates 
(or components) we have, after the cosine transform and the 

quantization, a sequence of s2 integers ordered after the zigzag 
principle. In each of these sequences we have replaced the first 
number - the DC term - by its derivation from the preceding DC 
term (that of the preceding sxs-square and the same component). 
However, because most of these integers (when the square runs 
through the picture) are usually zero, it is expedient to introduce 
them into the file in a certain way, namely by letting every second 
integer be a true number and every other integer be a number of 
zeros (in an unbroken chain). The integers (in the new sequence) 
can be negative and of any size, and it is now our task to convert 
the integers to sequences of bits that are as short as possible. As a 
file consists of bytes, we must hereafter divide the resulting stream
of bits into 8-blocks and convert these to bytes.

Since the integers are allowed to be of any size, we must express 
each integer as a pair of two sequences of bits, the first being a 
sequence which in some way (possibly in a coded form) 
corresponds to a natural number stating the length of the second 
sequence, which is the binary digit expression of the number in 
question. The first sequence of bits could simply be the binary 
expression of the natural number, but then these sequences would 
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have to have the same length, for instance 4. As 4 bits can express 
natural numbers from 1 to 16, and since by using no more than 16 

bits we can express integers up to 216-1 = 65535, this method can be
used for a picture which is fairly varied in colours or which is not 
too large. If you write a JPEG program, you should begin with this 
method, and first introduce one of those described below when the
program works, because it is a simple method which can compress 
an appropriate photo to 15 per cent of its size in BMP. But the 4 
bits must be extended to 5, if the program is to be able to handle all
sorts of pictures, and even 4 bits are too many bits to spend on 
stating these lengths, since most of the lengths are rather short. It 
would be preferable if we had a method that allowed the length of 
the first sequences (of the pairs) to vary.

Our numbers (stating numbers of bits) are natural numbers, and 
we want to represent them by sequences of bits in such a way that 
the most frequently used numbers correspond to the shortest 
sequences, and we must have a method that makes us able to 
determine when a sequence terminates. The first description of a 
principle that can put the elements of a given set (in our case the 
set of the natural numbers) into a one-to-one correspondence with
sequences of bits, so that the length of a sequence is inverse 
proportional to the frequency of use of the element, is Shannon 
and Fano's method of coding from 1949.
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The coding of Shannon and Fano

Assume that we have a procedure the result of which is a long 
reeling-off of information, which is expressed by using the 
elements of a given set. We want this set replaced by a set 
consisting of sequences of bits, in such a way that the most used 
sequences are the shortest. To this end, you can do the following: 
divide the set up in two parts so that the elements in each part are 
used with approximately the same frequency. For the elements in 
the first part, let the sequences begin with 0, and for the elements 
in the second part, let the sequences begin with 1. Divide each of 
these two sets up in two parts, so that the elements in each part 
are used with approximately the same frequency, and let the next 
bit be 0 for the elements in the first parts, and 1 for the elements in
the second parts, and so on.

In our case the set in question is the set of natural numbers, and 
the meaning of such a number is that it states the length of the 
binary digit expression of an integer. The frequencies of use of the 
natural numbers are in some way inverse proportional to their 
size, and we ought to theorize about the frequencies, or test a 
number of random pictures and take average values. However, in 
this case we will only make a guess determined by our desire to get
a simple formula: we assume that (the elements of) {1, 2, 3} come 
with the same frequency as the rest, that {1} comes with the same 
frequency as {2, 3}, that {4, 5} come with the same frequency as {6, 
7, ...}, that {6, 7} come with the same frequency as {8, 9, ...}, and so 
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on. With these assumptions, coding of the natural numbers will 
look like this:

      1        00

      2        010

      3        011

      4        100

      5        101

      6        1100

      7        1101

      8        11100

      9        11101

      10      111100

      11      111101

      12      1111100

      13      1111101

         etc.

Note that for n larger than 3, the number of 1's before the first 0 is 
the whole part of n/2 minus 1, and after this 0, there is only one bit
more: 0 for n even and 1 for n odd. When (in the stream of bits) we 
know that some of the following bits form such a block of bits, we 

33



can easily determine when it terminates, as well as determine the 
corresponding natural number: if the first bit is 0, a bit more will 
follow, if this is 0, the number is 1, if it is 1, a bit more will follow, if 
this is 0, the number is 2, if it is 1, the number is 3. If the first bit is 
1, we count the number of 1's before the first 0, and we know that 
the sequence terminates just after this 0. We add 1 to the number 
of the 1's and multiply this number by 2. The natural number, 
then, is this number, if the last bit is 0, and the succeeding number,
if the last bit is 1.

The integers that are the result of the cosine transform and the 

quantization (s2 integers for each sxs-square and each component),
when the squares run through the picture, have been written in a 
certain way, namely so that every second integer is a true number 
and every other integer states a number (possibly zero) of zeros. 
Futhermore, we have written these integers as sequences of bits 
each having two parts: the first part is written in a coded form and 
corresponds to a natural number the purpose of which is to state 
the number of bits in the second part, being the binary digit 
expression of the integer in question. But since the integers (of the 
"true" type) can be negative, we must indicate this in some way. 
You probably think that we have to use an extra bit for this, 
however this is not necessary: the first digit of the digit expression 
(being the most significant digit) will always be 1, and we can 
indicate that the number is negative by replacing this 1 by a 0. The 
resulting stream of bits is ultimately divided up in 8-blocks, which 
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are written into the file as bytes - possibly extending the very last 
block (by 0's or by 1's) so that it becomes an 8-block.

We have used this simple method of coding in our demonstration 
program, and as it can compress a well suited photo to 6-12 per 
cent of its original size, we cannot here see any reason for choosing
a method involving more machinery. Nonetheless, we will now say 
a little about the method of coding used by JPEG (and explained in 
details in part two).

The coding of Huffman

If we had spent more time studying frequencies, we could have got 
a more efficient program. However, the method of Shannon and 
Fano is not the best method. The most efficient method of coding is
that of Huffman, invented in 1951. This method has been almost 
universal in the JPEG procedure. We will describe it in part two, and
the reader will understand why we have avoided it here: it is not 
easy to describe and illustrate, and the encoding and the decoding 
demand more operations. Besides, in the JPEG procedure the DC 
numbers and the AC numbers are Huffman-coded in a different 
way, and the Y component and the colour components use 
different Huffman tables.

The coding method of Huffman can be proved to be the most 
efficient one, but this superiority presupposes that all the data are 
encoded in the same way, and this is not the case in the JPEG 
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compression. Therefore, the JPEG committee prescribed, besides 
the Huffman coding, the so-called arithmetic coding, which can 
compress pictures a little bit more. However, the arithmetic coding
is slower and it has not been used much - partly because it has 
been patented.

The decoding and drawing

The program that draws the picture from the file must do all the 
things that we have done in the opposite order. The width and the 
height of the picture and the quality factor(s) must be read from a 
header.

Let us sum up what must be done in the construction of the data 
part of the file:

     Divide up the picture in sxs-squares

     For each square:

          For each point, convert the RGB values to YCbCr values

          For the Y, Cb and Cr component, cosine transform the s2 
numbers

          Order these 3 x s2 numbers after the zigzag principle

          Replace the first number of an s2-sequence (the DC term) by 
its derivation from the analogues number for the preceding square
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          Quantize the 3 x s2 numbers

     In the resulting sequence of integers, replace each unbroken 
sequence of zeros by its length (possibly 0)

     Write each integer as a sequence of bits (having two parts: a 
code and a digit expression), so that the sequences can be joined 
together into a continuous stream of bits.

After the header (stating the width and the height and the quality 
factor) has been read, we must convert each read byte of the file to 
an 8-block of bits, and then decode the resulting stream of bits. 
Each sequence of bits determining an integer consists of two parts. 
The first part forms a code, which is designed so that we can see 
where it ends. We decode it, and in this way get a natural number 
m. The second part of the sequence is the next m bits in the 
stream, and these m bits are the binary digit expression of an 
integer. However, if this sequence begins with 0, this indicates that
the integer is negative, and the 0 must be replaced by 1. Every 
second integer (being non-negative) states a number of zeros, and 
we (imagine that we) write down these zeros. We do this until we 
have numbers enough to draw an sxs-square of the picture, namely

3 x s2 numbers. These 3 x s2 numbers are obtained by cosine 

transform and by quantization of the s2 colour values for the three 
components. They must first be de-quantized by multiplying by 
the numbers we have divided by. After this the very first number 

of each s2-sequence (the DC term) must be added to the 
corresponding number for the preceding sxs-square, as these 
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numbers represent differences. By the inverse zigzag procedure, 

each of the three s2-sequences is converted to a sxs-matrix of 
numbers g(u, v), u, v = 0, 1, ..., s-1, and to this matrix the inverse 
cosine transform is applied, giving a matrix f(i, j), i, j = 0, 1, ...,s-1, of
colour values for the Y, Cb and Cr component. For each point (i, j) 
in the sxs-square, the three colour values f(i, j) make up an YCbCr 
triple, which is converted to a RGB triple, and the point in the 
picture corresponding to the point (i, j) in the square is coloured 
with these RGB values.

Miscellaneous

Leave out the last terms?

After quantization, the last of the s2 numbers of the sxs-matrices 
g(u, v) are usually very small, and we could choose one of the 
numbers r = 3, 4, ..., s-1 and omit those pairs (u, v) for which u or v 

≥ r, so that we only had to deal with r2 numbers (u, v = 0, 1, ..., r-1). 
However, we do not win much by doing this, since r must be rather
near s-1 and since the actual size of the number of zeros is not 
essential (30 zeros engage 8 bits and 12 zeros engage 7 bits). In the 
drawing procedure we could save time by restricting the inverse 

cosine transform to r2 numbers. We have done this in our (two) 
drawing programs of part two (we have set r = 6). But as such a 
program (for practical use) has to be written in assembly language,
we do not win much by doing this either, since nowadays the 
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picture is drawn pretty fast. But it is illustrative to see how many, 
or rather, how few of the cosine transformed numbers (the terms 
in the expansion of the colour value function) we actually need. We
have therefore designed our drawing program so that we can enter
a "number of terms" (the number r). In this picture (using 8x8-
squares) the number of terms is 8 and 4, respectively:

Note that the size of the file depends strongly on the fact that most
of the numbers before the compression are zeros, because every 
second number states a number of zeros. Therefore, if there were 
only few zeros, the most (every second) of these numbers (being 
zero in coded form = 000), would unnecessarily occupy 
considerable space. Thus, if instead of dividing by a large number 
in the quantization, we divide by a small number (e.g. 0.1), we get 
the result that the file takes up twice as much space as in BMP 
format!
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Why only 8x8-squares?

The choice (in the true JPEG procedure) of 8 as side length of the 
small squares, has nothing to do with the role of 8 in the computer,
since the numbers are converted to sequences of bits of all sorts of 
lengths. The side length must not be too small, because then the 
effect of the cosine transform is lessened, and not too large either, 
because then the number of calculations may be too large: for an 

sxs-square, the total number of terms is s4, because there are s2 

points and for each point the formula has s2 terms. Therefore, if 
the side length is doubled, the number of calculations quadruples. 
The choice of 8 as side length was surely the most optimal when 
the JPEG procedure was introduced. However, nowadays, as the 
speed has multiplied, we could make better compression by 
choosing a larger side length (12, for instance), but it is too late to 
alter this and the benefit is not significant.

As regards the earlier mentioned quadratic picture of 280 pixels (to
demonstrate the cosine transform), the number of calculations is 
1225 times larger than if the picture were divided up in 8x8-
squares.

In the two pictures below we have used divisions up in 6x6- and 
20x20-squares, respectively. The picture is unsuitabel for JPEG. The
quality seems equal, and the compression is 3.5 and 4 times, 
respectively.
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The luminant contra the chromatic part

Let us see how it goes if we make large differences in the 
quantization of the luminant and the chromatic part of the top-
most picture below. In the left-most picture the quality is low for 
the luminant part and high for the chromatic part. Therefore the 
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pattern is disturbed but the colours seem correct. In the right-most
picture it is the opposite: the pattern is correct but the colours are 
unfamiliar:

Difficult pictures

The JPEG procedure always introduces changes into the picture, 
but by choosing a high quality, these changes can be made 
microscopic. But they are there, and if you want to someday be 
able to work up a picture, you should not save it in JPEG format. 
Some pictures are less suited for JPEG compression than others, in 
the sense that the quality must be set high, if you want the changes
to be completely invisible. But it is always possible to save in JPEG 
without visible changes, people will say. However, this is not 
necessarily true: it depends on the JPEG implementation. Our 
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demonstration program can always make a file resulting in a 
(nearly) faultless picture, but this is because we handle the colour 
components in the same way as the Y component - we only 
quantize by different numbers, but we could refrain from 
quantization (setting the quality to 100). In the true JPEG 
procedure it is possible to reduce the size of the two colour 
"pictures" (the colour components) compared to the grey scale 
picture (the Y component). This can be done (for instance) by a 
previous dividing up of the two colour "pictures" in 2x2-squares 
and by regarding such a square as one pixel by taking the average 
value of the four colour values, so that the colour pictures become 
four times as small. This is done before the dividing up in 8x8-
squares, so that four 8x8-squares of the Y component are 
combined with one 8x8-square of the colour components. The 
reason is that the colours usually do not vary rapidly across the 
picture, and we can compress about 25 per cent more in this way. 
The procedure is called subsampling (of the colour components).

The next two pictures are made with our (home-made but) true 
JPEG program in part two, but with different settings. The picture is
made by laying a picture for which every second pixel is green and 
every other pixel is transparent over another picture. Both 
pictures take up rather much space because of the strong changes 
from pixel to pixel. In the first picture the colour components are 
handed in the same way as the Y component, therefore the picture 
is correct. In the second picture subsampling of the colour 
components has been used, so that the colour values become 
average values, therefore the picture is more green:
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Note that not all JPEG compressing programs allow for the option 
between subsampling and non-subsampling the colour 
components.

For a picture in grey scale we have only the Y component, but as 
the contribution of the Cb and Cr components (after quantization) 
are small compared to the Y component, the grey scale version of a
picture takes up almost as much space as the colour version - 
usually more than 90 per cent.

The compression should reach its extremum when the picture is of
only one colour. This is the case for our demonstration program: 
the data part of such a 1000x1000-pixel picture takes up only 14 
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bytes. But when we use the true JPEG procedure, the data part will 
take up 15.000 bytes - we will see why in part two.

Transparency

Some image formats can contain transparency, GIF and PNG, for 
instance, but not BMP and JPEG. GIF is especially suited for graphic 
representations and PNG is suited for pictures with objects laid 
over a simple background. They are both lossless, but a GIF picture 
can only contain 256 different colours (specified in the header), 
and, in spite of an effective compression, a photo converted to a 
PNG file often takes up 75 per cent of the BMP file. As regards JPEG,
in a FAQ-article you can read the following answer to the question 
"Can I make a transparent JPEG?": "No. JPEG does not support 
transparency and is not likely to do so any time soon. It turns out 
that adding transparency to JPEG would not be a simple task; read 
on if you want the gory details". And then we are told that in a GIF 
picture the transparency is introduced by letting an unused colour 
value mark out the transparent domain, but this method cannot be
used in JPEG. It could be used in BMP, where one of the 16777216 
possible colours could easily be missed for marking out a 
transparent domain, however not in JPEG, where the colour values 
are imprecise. Transparency will engage one bit for each point, and
this new component could be subjected to the same procedure as 
the three YCbCr components. However, this method is rejected on 
the ground that the JPEG procedure is not suited for sharp 
passages: if the boundary around a hole, through which strongly 
deviating colours appear, is to be reproduced satisfactorily, the 
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cosine transformed numbers (of the transparency component) 
could only be quantized by small numbers, and then the file would 
take up quite some space. This is true, but the picture would still 
take up much lesser space than in PNG format, and besides, 
transparency is usually only for temporary use. It is easy to 
arrange the JPEG file such that it can support transparency.

However, as not much is won by cosine transform and quantization
of the transparency component, these operations should be left 
out, and the bits for the transparency should be entered in the file 
in this way: we go along the horizontal lines by turns from left to 
right and from right to left, so that the pixels are adjacent, and in 
this sequence of bits we replace each unbroken interval of 0's or 1's
by the number of the 0's or 1's (the sum of these numbers is just 
the width times the height). The resulting sequence of natural 
numbers is then coded, and can be written in the file before the 
colour data. By this method, the transparent domain becomes 
exactly as in the original picture. In the picture to the left the black
is made transparent and the picture is laid over a blue background 
resulting in the picture to the right, and in spite of the very low 
quality of this picture, the transparent domain is the same:
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The procedure of introducing transparency in a picture can take 
place via a picture in BMP format, for instance. The BMP format 
does not (at present) support transparency, but we can accompany
the picture by a monochrome picture also in BMP format 
determining the transparent domain. A monochrome picture is a 
picture containing only two different colours, usually black and 
white. The RGB values of the two colours are stated in the header 
(or rather the header is prolonged with the bytes necessary for this
information), and the data - one bit for each point - are written in 
the same way as the RGB values in an usual BMP file: row for row, 
but such that each 8-block of bits is converted to a byte (and such 
that the length of the rows of bytes is divisible by 4). This method 
is supported by the Windows bitmap drawing procedure: if we let 
the transparent domain in the picture with the colours be black, 
and let it be the white domain in the monochrome black-and-white
picture, then Windows has procedures that can transfer the data of 
the two files directly to the screen, making a picture where the 
transparent domain is empty, so that we through this see the 
underlying - the desktop, for instance.
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Part two: the practice
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Introduction

The four distinct modes of operation

The JPEG committee intended that the method should be available 
in a number of variants and with a number of extensions:

    1. The sequential DCT mode of operation, where the picture is 
scanned in the same way as in part one (but not in our zigzag way, 
column-wise from left to right, but line-wise from top to bottom, 
just as in reading).
     2. The progressive DCT mode of operation, where the picture is 
displayed in its entirety concurrently with the transmission of the 
bitstream, at first imperfect and then gradually improving.
     3. The lossless mode of operation, where the file is only 
compressed, with no data lost by cosine transform or  
quantization.
     4. The hierarchical (DCT or lossless) mode of operation, where 
the picture is stored at multiple resolutions for different uses (low-
resolution screen, high-resolution printer, etc.), in such a way that 
the lower-resolution images are stored with supplementary data 
which can be added on to produce higher-resolution images as 
required.

The colour values are usually measured in bytes (8-bit numbers), 
and in this case the precision of the (real) numbers in the 
calculations is set to 11 bit. JPEG also offers extended precision, 
primarily intended for grey scale pictures, where the colour values 
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instead of utilizing 8 bits use 12 bits (a range from 0 to 4095), and 
where the precision in the calculations is increased to 15 bit. 
Extended precision implies that the Huffman tables must go to size 
15 (instead of 11) for the DC numbers and size to 14 (instead of 10) 
for the AC numbers. Furthermore, the numbers in the quantization
tables can be words (from 0 to 65535) instead of bytes. As this 
possibility is rarely used, we will ignore it here.

For the baseline sequential DCT mode, that is, the non-extended 
sequential DCT mode, the method of coding is the Huffman coding 
with two tables for each component. For the extended modes you 
can choose between the Huffman coding with two or four tables 
for each component and the arithmetic coding.

Although four modes were intended, only the baseline sequential 
DCT mode has survived in widespread use. There is not much point
in the progressive and the hierarchical mode nowadays, where a 
JPEG picture is transmitted and displayed fast, and the benefits of 
the lossless mode seem too minor. Arithmetic coding can compress
a little better than the Huffman coding, but it is slower and there 
have been patent-related problems.

Our account here, like our earlier account in part one, was 
accompanied by the writing of some programs, but now only to 
ensure that we had properly understood the procedure. We will 
show pieces of these programs written in a Pascal-like language 
which should be easy for everybody to understand.
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We first made a program that can convert a picture in BMP format 
to a grey scale picture in JPEG format. When this worked correctly, 
we extended it to colour pictures. Such a program, to be of use in 
production systems for JPEG files, must of course be written in 
assembly language and without making use of the co-processor 
(80-bit numbers) in the transforms. However, if the program is 
only for demonstration or if it is a part of a program producing 
computer graphic, it may be written in a high-level language and 
may use floating point operations. Our program which can read a 
JPEG file and draw the picture, for the baseline sequential DCT 
mode, was made in the same way. Since there are already many 
such programs, it does not need to be efficient. On the contrary, we
have made it extra slow by using a "setpixel" procedure, because it 
is simpler - and because it gives the drawing a funny look.

The picture to the left below is made with our program in part one 
and the right with our program in this part. The quality is 
approximately the same. The first takes up 16.3 Kb and the second 
takes up 15.1 Kb (uncompressed they take up 228 Kb):
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Requirements Documents

"Digital Compression and Coding of Continuous-Tone Still Images - 
Requirements and Guidelines/Recommendation T.81" (1992), also 
called just T.81, is 180 pages long. If you are only interested in the 
baseline sequential DCT mode with Huffman coding, you do not 
have to read all 180 pages. The knowledge required of mathematics
and programming is limited. But you must already know the 
meaning of the mathematical terms, since these are not explained. 
The purpose of T.81 was to set a common standard for the core of 
the procedure: the specifics are described separately in standards 
for the implementation. These are in additional documents with 
titles like "JPEG File Interchange Format, Version ...". The only 
thing in our account that is in these implementation documents is 
the colour space designation: the RGB  YCbCr transform. The →
formulas for this colour transform shown in part one can be found 
in version 1.02 from 1992 (7 pages). T.81 only speaks of four 
components. It is implicit that only one component means that the 
picture is in grey scale, that three components can be the RGB 
components or most commonly the YCbCr components, and that 
the fourth component is for the possibility of transparency.

The Huffman coding

The main difference between our procedure in part one and the real
JPEG procedure is that in part one we used a method of coding 

52



which is easy to understand and use, but which was not very 
efficient, partly because it was based on frequencies that were 
more determined by our desire for a simple coding procedure than 
by reality. JPEG uses the more efficient Huffman coding and 
frequencies that either are determined by the actual picture or by 
the average values for a number of typical pictures. Furthermore, 
we used the same coding procedure for all the numbers, whereas 
JPEG uses different coding for the DC and the AC numbers and also 
different coding for the Y component and for the two colour 
components - this implying that the coding can demand tables of 
more than 450 numbers.

We will here choose Huffman tables based on typical frequencies, 
rather than on the frequencies measured by a pre-scanning of the 
actual picture. Therefore we only need to know how the Huffman 
encoding and decoding is to be performed once we have the 
necessary tables: we do not need to know how these tables are 
constructed on the basis of frequency. We will, however, show the 
procedure for the construction of the Huffman tables. It is a rather 
simple procedure, and the reader might want to make a program 
that measures frequencies and constructs the Huffman tables from 
the actual picture (we will show the programs in Appendix 2).

Assume that we have some values a1, a2, ..., an, which are attached 
to frequencies and which are to be equipped with code words so 
that the most frequently used values get the shortest codes. This 
can be done by constructing a so-called Huffman tree with the 
values as leaves with attached frequencies. Usually a Huffman tree 
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can be constructed in several ways giving different code lengths. 
JPEG chooses the following:

We order the values according to decreasing frequency. For the 
two last values we add their frequencies, remove the two values 
and insert a node at the place among the remaining values where 
this frequency belongs (so that the frequencies are still decreasing 
- note that if the new frequency occurs among the others, the 
insertion can be made in more than one way). This is repeated 
until there is only one node left, and this will have frequency 1. We 
have for each operation removed two things: either two values, or 
two nodes, or a value and a node. We construct the Huffman tree 
by placing the values (leaves) at the bottom and successively 
connecting with lines the pairs of removed things with the node 
that has replaced them.

If, for example, the values are the numbers 0, 1, 2, 3 and 4, and 
their frequencies are 0.3, 0.25, 0.2, 0.15 and 0.1 (having sum 1), 
respectively, the removal procedure could look like this:

      a1      0      0.3      0.3        0.45    0.55      1

      a2      1      0.25    0.25      0.3      0.45

      a3      2      0.2      0.25      0.25

      a4      3      0.15    0.2

      a5      4      0.1

And the Huffman tree could look like this:
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The length of the Huffman code assigned to a value is the number 
of lines from the value to the last node (the top node with 
frequency 1). Once we know the lengths (of the codes) assigned to 
the values, we can form the code words, and this can be done in 
different ways:

By using the Huffman tree, we can code for instance by writing 0 
when we go to the right and 1 when we go to the left when we 
progress from the value towards the top node:

      0      00

      1      10

      2      01

      3      011

      4      111

But we can also code without the Huffman tree, what is essential is 
the code lengths for the values. For instance, we can code so that 
the sequence of code words (identified by numbers via their binary
digit expressions) is increasing: forming consecutive numbers 
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when the code length is unaltered and adjoining zeros when the 
code length increases:

      0      00

      1      01

      2      10

      3      110

      4      111

It is this last way of forming codes that is used by JPEG, because it 
is fast to decode.

In JPEG a code word must not consist of only 1's. We can avoid this 
by adding provisionally an extra value whose frequency is half (for 
instance) of the frequency of the last and least value (and finally 
remove a code from the codes of the largest length).

Furthermore, the length of a code word must not exceed 16. 
Therefore, if the Huffman tree leads to code lengths of more than 
16 bits, the longest codes must successively be shortened. In our 
case, where we have imported the coding, we do not need to care 
about this problem, but we will briefly describe it: The longest code
length is assigned to an even numbers of values. Therefore we can 
shorten the longest length by one bit (the last) and assign this code
to one of the values, if we can find another (shorter) code to the 
other value. Assuming that the last (longest) codes with fewer bits 
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have j bits, we can remove the last of these codes (of length j) and 
extend it by a 0 and a 1, respectively, so that we get two new codes 
of length j+1 which can replace the two removed codes.

The Huffman coding is performed from the (Huffman) values 
(occurring in the picture) and the code length assigned to each 
value (determined by its frequency). Therefore our point of 
departure is two lists of bytes: the first, called BITS, goes from 1 to 
16, and tells us, for each of these numbers, the number of codes of 
this code length. The second, called HUFFVAL, reels off, for each 
code length having a non-zero number of codes, the values to be 
coded with codes of this length (and as many values as there are 
codes of this length). The values in HUFFVAL are called the 
Huffman values, and they are ordered according to increasing code
length (within a given code length the ordering is arbitrary).

In our program we use these lists for the DC numbers of the Y 
component:

  BITS

      0 1 5 1 1 1 1 1 1 0 0 0 0 0 0 0

  HUFFVAL

      0

      1 2 3 4 5

      6

      7
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      8

      9

      10

      11

- and these lists for the DC numbers of the two colour components:

  BITS

      0 3 1 1 1 1 1 1 1 1 1 0 0 0 0 0

  HUFFVAL

      0 1 2

      3

      4

      5

      6

      7

      8

      9

      10

      11
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The last lists tell that there are: 0 codes of length 1, 3 codes of 
length 2 (coding the Huffman values 0, 1 and 2), 1 code of length 3 
(coding the Huffman value 3), etc.

Most of the numbers to be coded are AC numbers, and they are 
coded in another way than the DC numbers. Moreover, the values 
range a larger interval. As we import the Huffman coding, we must 
use lists containing all the possible values.

In our program we use these lists for the AC numbers of the Y 
component:

  BITS

      0 2 1 3 3 2 4 3 5 5 4 4 0 0 1 125

  HUFFVAL

      1 2

      3

      0 4 17

      5 18 33

      49 65

      6 19 81 97

      7 34 113

      20 50 129 145 161
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      8 35 66 177 193

      21 82 209 240

      36 51 98 114

      130

      9 10 22 23 24 25 26 37 38 39 40 41 42 52 53 54 55 56 57 58 67 68 69 
70 71 72 73 74 83 84 85 86 87 88 89 90 99 100 101 102 103 104 105 106
115 116 117 118 119 120 121 122 131 132 133 134 135 136 137 138 146
147 148 149 150 151 152 153 154 162 163 164 165 166 167 168 169 170
178 179 180 181 182 183 184 185 186 194 195 196 197 198 199 200 201
202 210 211 212 213 214 215 216 217 218 225 226 227 228 229 230 231
232 233 234 241 242 243 244 245 246 247 248 249 250

- and these lists for the AC numbers of the two colour components:

  BITS

      0 2 1 2 4 4 3 4 7 5 4 4 0 1 2 119

  HUFFVAL

      0 1

      2

      3 17

      4 5 33 49

      6 18 65 81

      7 97 113
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      19 34 50 129

      8 20 66 145 161 177 193

      9 35 51 82 240

      21 98 114 209

      10 22 36 52

      225

      37 241

      23 24 25 26 38 39 40 41 42 53 54 55 56 57 58 67 68 69 70 71 72 73 
74 83 84 85 86 87 88 89 90 99 100 101 102 103 104 105 106 115 116 
117 118 119 120 121 122 130 131 132 133 134 135 136 137 138 146 147
148 149 150 151 152 153 154 162 163 164 165 166 167 168 169 170 178
179 180 181 182 183 184 185 186 194 195 196 197 198 199 200 201 202
210 211 212 213 214 215 216 217 218 226 227 228 229 230 231 232 233
234 242 243 244 245 246 247 248 249 250

If we call the number of Huffman values nhv, we have an array 
HUFFVAL[k] from k = 1 to nhv arranging the Huffman values in 
their enumerated order. From the list BITS[i] we form an array 
HUFFSIZE[k] from k = 1 to nhv of the code lengths i for which the 
number BITS[i] is non-zero, each i repeated BITS[i] times, so that 
the array HUFFSIZE[k] is parallel to HUFFVAL[k]. And we now 
construct an array HUFFCODE[k] from k = 1 to nhv stating the 
Huffman code assigned to HUFFVAL[k]. We identify a code with the
integer having the bits of the code as binary digit expression (e.g. 
110 = 6), being aware that as the code can start with one or more 
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zeros, the digit expression must start with zeros in order to get the 
right length (e.g. 011 = 3).

The code words are generated in this way: assume that we have 
formed all the codes of length ≤ n, and that the last formed code is 
the number c. Now assume that the next code length is n+i, then 

the next code is c = 2i∙(c + 1) (the code got by joining i zeros to c + 
1), and the following codes are the consecutive numbers (c+1, 
c+2, ...), so many as there are codes of (the new) length n = n+i. At 
the start c is set to 0. Code number k, HUFFCODE[k], is the code 
assigned to the Huffman value HUFFVAL[k].

The encoding

For the encoding we reorder the lists (arrays) HUFFSIZE and 
HUFFCODE so that they become functions of the Huffman values 
(instead of functions of the order number), forming arrays 
EHUFSI[val] and EHUFCO[val]:

    if val = HUFFVAL[k] then

    EHUFSI[val] = HUFFSIZE[k] and

    EHUFCO[val] = HUFFCODE[k]

Note that EHUFCO[val] is an array: EHUFCO[val][j] is the j-th bit of 
the code.
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If we let the function size(n) (n integer) state the number of digits 
in the binary digit expression of n, and let digit(n) be the digit 
expression itself (so that digit(n) is an array of bits from 1 to 
size(n)), the procedures for the construction of HUFFSIZE[k], 
HUFFCODE[k], EHUFSI[val] and EHUFCO[val] (and which are to be 
applied for each Huffman table) could look like the following:

    k = 1

    i = 1

    j = 1

  1

    if j <= bits[i] then

      begin

        huffsize[k] = i

        k = k + 1

        j = j + 1

        goto 1

      end

    i = i + 1

    j = 1

    if i <= 16 then

      goto 1
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    nhv = k - 1

    k = 1

    c = 0

    i = huffsize[k]

  2

    huffcode[k] = c

    c = c + 1

    if k = nhv then

      goto 4

    k = k + 1

    if huffsize[k] = i then

      goto 2

  3

    c = 2 * c

    i = i + 1

    if huffsize[k] = i then

      goto 2

    else

      goto 3

  4
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    k = 1

  5

    val = huffval[k]

    e = huffsize[k]

    ehufsi[val] = e

    l = size(huffcode[k])

    dig = digit(huffcode[k])

    if l < e then

      for j = 1 to e - l do

        ehufco[val, j] = 0

    for j = 1 to l do

      ehufco[val, e - l + j] = dig[j]

    k = k + 1

    if k <= nhv then

      goto 5

For the lists above for the DC numbers for the Y component, nhv = 
12, HUFFSIZE[k] is the sequence 2 3 3 3 3 3 4 5 6 7 8 9, and 
HUFFCODE[k] is the sequence 00, 010, 011, 100, 101, 110, 1110, 
11100, 111000, 1110000, 11100000, 111000000. And for the functions
EHUFSI[val] and EHUFCO[val], we have: EHUFSI[0] = 2, EHUFSI[1] = 
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3, EHUFSI[2] = 3, etc., and EHUFCO[0] = 00, EHUFCO[1] = 010, 
EHUFCO[2] = 011, etc.

In the encoding we must for non-negative integer n know how 
many digits are in the binary expression of n. The function size(n) 
states this number, and it is extended to negative n by letting -n 
have the same size as n. It is given by size(0) = 0 and size(n) = 
trunc(ln(abs(n))/ln(2)+0.000001) + 1 for n <> 0:

      n                     size

      0                        0

      1                        1

      2, 3                    2

      4 ... 7                 3

      8 ... 15               4

      16 ... 31             5

      32 ... 63             6

      64 .. 127            7

      128 .. 255          8

      256 .. 511          9

      512 .. 1023        10

      1024 .. 2047      11

        etc.
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The integer the binary digit expression of which follows a Huffman
code, can be negative, and (as explained in part one) we do not need
an extra bit to indicate this: the digit expression will always begins 
with 1 and we can write 0 instead of the 1. At the decoding of the 
sequence, the start with 0 will then show that the number is 
negative, and 1 followed by the rest of the digits will be the binary 
expression of the numerical value. However, in order to indicate 
that the number is negative, JPEG has chosen to replace all the 
digits by their opposite bit (forming the complement of the 
number). Therefore, if the digit expression begins with 0, has val 
digits and corresponds to the (non-negative) integer n, then the 

negative integer is -(2val - 1 - n) (in T.81 it is said that if the 
sequence of digits begins with 0 and if the number of digits is T, 

then we get the numerical value by adding 2T + 1 to the number, 
but this is not correct, the number of course is obtained by 

subtracting it from 2T - 1 = 11...1 (T figures 1)).

The program for the function, digit(n) (n <> 0), giving the binary 
digit expression for the integer n, when n is positive, and the 
complement to the digit expression, when n is negative, could look 
like this:

    j = size(n)

    if n < 0 then

      n = round(exp(j * ln(2))) - 1 - abs(n)

    if j = 1 then
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      digit[1] = n

    else

      begin

        j = j - 1

        q = round(exp(j * ln(2)))

        i = 0

        while i <= j do

          begin

            i = i + 1

            l = n div q

            n = n - l * q

            q = q div 2

            digit[i] = l

          end

      end

The DC numbers:  For a DC number (the first number of the 64-
array) it is not the number itself, but the difference DIFF between 
the number and the preceding DC number which is to be coded, 
and it is not DIFF itself, but the number val of bits needed to 
express it: val = size(DIFF). The code is then EHUFCO[val] and after 
this comes the val binary digits of DIFF: digit(DIFF)[j], j = 1, ..., val.
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The AC numbers:  The 63 AC numbers (of the 64-array) are 
encoded in another way than the DC number. Here the size of the 
actual number (not a difference) is coded, and since there are 
usually many zeros in an AC array, the number of these in an 
uninterrupted row is combined with the size of the following non-
zero AC number. If there are m zeros before the non-zero AC 
number n and if the size of n is k, we combine these two numbers 
(being half bytes) to the byte val = m*16 + k, and it is this byte that 
is Huffman coded. This presupposes, however, that m and k really 
are half bytes (that is, ≤ 15). k is always ≤ 11, but there can be 
more than 15 zeros in a row, therefore, when a row of zeros has 
reached 15 and is followed by another zero, we must code these 16 
zeros separately: the byte to be coded is val = 15*16 + 0 = 240 (called
ZRL). If the last of the 63 AC numbers are zeros, this is indicated by 
writing the Huffman code assigned to val = 0*16 + 0 = 0 (called EOB, 
End-Of-Block). After the Huffman code has been written, the k 
binary digits of the non-zero AC number are written in the same 
way as for the DC (or rather the DIFF) numbers. Frequencies and 
code lengths are assigned to all the (Huffman) values val = m*16 + k
that are constructed in this way (or at least those values occurring 
in the picture). The number of Huffman values (to be coded) can at 
most be the number of possible zeros (0, 1, ..., 15, that is, 16) times 
the number of possible sizes of the non-zero AC numbers (namely 
10), and in addition to this product (160), the two extra values 240 
and 0. In total 162 Huffman values. As we here have chosen to 
import Huffman tables based on tests of a number of casual 
pictures, our AC Huffman tables most contain 162 values.
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The decoding

For the decoding (when the file is read)(instead of the arrays 
EHUFSI[val] and EHUFCO[val]) we must have constructed 
beforehand three arrays from k = 1 to 16: the minimum (first) code 
of length number k, MINCODE[k], the maximum (last) code of 
length number k, MAXCODE[k], and the number of MINCODE[k] in 
the sequence of the codes (and Huffman values), VALPTR[k] (value 
pointer):

    j = 0

    k = 0

  0

    k = k + 1

    if k > 16 then

      goto fin

    if bits[k] = 0 then

      begin

        maxcode[k] = -1

        goto 0

      end

    j = j + 1

    valptr[k] = j
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    mincode[k] = huffcode[j]

    j = j + bits[k] - 1

    maxcode[k] = huffcode[j]

    goto 0

  fin

Note that when there are no codes of code length k, MAXCODE[k] = 
-1, and MINCODE[k] and VALPTR[k] are not defined.

Decoding then goes on as following: In the stream of bits, the first 
thing to do is to collect as many together that they form a code: we 
must determine where to stop. We start with k = 0, c = 0 and 
MAXCODE[0] = -1 (so that c > MAXCODE[0]), and for each read bit 
we join this to c and increase k by 1, until c ≤ MAXCODE[k]. Since 
we identify codes with numbers, the joining means that we set c = 
2*c + bit for each new bit (called bit). The code then is c, and we 
shall find the Huffman value val assigned to c, and this is the 
Huffman value having the number k = VALPTR[k] + c - MINCODE[k],
so that val = HUFFVAL[k]:

    k = 0

    c = 0

    while c > maxcode[k] do

      begin

        nbit
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        c = 2 * c + bit

        k = k + 1

      end

    val = huffval[valptr[k] + c - mincode[k]]

Here nbit is the procedure described later, which reads the next bit.

The header part

The markers

The header part of a JPEG file is divided into segments, and each 
segment starts with a marker, identifying the segment. Usually a 
JPEG file contains 7 different markers. A marker is a pair of bytes, 
the first is 255 and the second is different from 0 and 255. We 
identify a marker by its second byte. Two markers stand alone (and
thus do not open a segment): the marker which opens the file SOI 
(Start Of Image) = 216 and the marker which closes the file EOI (End
Of Image) = 217. (There is one more type of marker which stands 
alone, but this is not used in the sequential DCT mode which we 
restrict ourselves to here: it marks a restart of a scanning and it is 
indexed by one of the numbers 0, 1, ..., 7: RST0, ..., RST7 (ReSTart) = 
208, ..., 215). The other markers open a segment, and in this case 
the following pair of bytes (b1, b2) states the length l of the 
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segment (including these two bytes): l = b1 * 256 + b2. The following 
sequence of l - 2 bytes is the content of the segment. There are the 
following types of segments (identified with their markers):

     APP0, APP1, ..., APP15 (APPlication) 224-239

     COM (COMment) 254

     SOF (Start Of Frame) 192-207, except 196, 200 and 204

     DHT (Define Huffman Table) 196

     DQT (Define Quantization Table) 219

     SOS (Start Of Scan) 218

(And a few more, which are not used here: DNL (Define Number of 
Lines = 220), DRI (Define Restart Interval = 221), DHP (Define 
Hierarchical Progression = 222), EXP (EXPand reference 
component(s) = 223), DAC (Define Arithmetic Coding 
conditioning(s) = 204), TEM (for TEMporary use in arithmetic 
coding = 1) and besides some reserved markers: JPG (reserved for 
JPeG extensions = 200, 240, 241, ..., 253) and RES (REServed = 2, ..., 
191).)

The first two - APP and COM - specify things that lie outside the 
proper JPEG procedure. Usually only a single APP segment is 
present (namely APP0), specifying the implementation. An APP 
segment can also contain information on camera type and on when
the picture was taken. COM can state the program used to make 
the file, the chosen quality per cent, etc.
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The frame segment SOF

The point of departure of the JPEG procedure is a "picture", and a 
picture can be defined as a (rectangular) matrix of either numbers, 
pairs of numbers, triples of numbers or quadruples of numbers. 
That is, a picture is a matrix of arrays having one of the numbers 1-
4 as length. A grey scale picture is a matrix of bytes. A colour 
picture is a matrix of RGB triples (of bytes) or of TCbCr triples (of 
signed bytes). A picture can thus be regarded as consisting of one 
or more (at most four) matrices of integers, and such a matrix is 
called a component of the picture. To each component is assigned a 
component identifier (byte): for instance 0 for the (one) component 
of a grey scale picture, and 0, 1 and 2 for the three components of a
colour picture.

The dimensions of the picture, the component identifiers and the 
order of the components are specified in the frame segment SOF, 
along with how the components are to be handled in relation to 
each other. Because the colours usually only alter slowly from 
place to place (and as we are not very good at distinguishing small 
alterations in colours), for the two colour components, we can, for 
instance, divide the picture up in 2x2-squares of pixels and take 
the average values, so that we regard such a square as one pixel 
and thus deal with colour pictures that are four times as small. We 
can also restrict ourselves to two pixels, either lying horizontally 
or vertically. A pair of numbers (Hi, Vi) for each component 
determines how the components are to be scanned in relation to 
each other. Hi and Vi can go from 1 to 4 (Hi and Vi must be rather 
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small: the sum of their products must not exceed 10). Let H and V 
be the maximum Hi and Vi value, respectively. These maximum 
values are usually linked to the Y component, and this ((Hi, Vi) = 
(H, V)) means that the pixels are taken as they are: there are as 
many samples horizontally as the width of the picture, and there 
are as many horizontal lines as the height of the picture. If a 
(colour) component has the pair (Hi, Vi), the number of samples in 
a horizontal line is (Hi/H) times width, and the number of 
sampling lines is (Vi/V) times height, that is, small rectangles of 
(H/Hi)x(V/Vi) pixels are collected (and regarded as one pixel). 
Usually (Hi, Vi) = (1, 1) for the two colour components, and (Hi, Vi) 
= (1, 1) or (2, 1) or (1, 2) or (2, 2) for the Y component. (Hi, Vi) = (2, 
2) means that four colour pixels are collected and that "this" pixel 
is combined with four Y pixels. As the picture is divided up in 8x8-
squares, this means that four 8x8-squares for the Y component are 
combined with one 8x8-square for the colour components. The 
coded data (the coded 64-arrays) for the four Y squares are written 
in the file in the usual scanning order: from left to right along the 
lines, and from top to bottom. Next comes the coded data (the 
coded 64-arrays) for the two colour components. The analogue 
procedure when only two pixels are collected (horizontally or 
vertically). Such a part of the data stream arising from all the 
components and the collected 8x8-squares is called a minimum 
coded unit (MCU).

This picture shows the drawing (pixel for pixel - and on an 
enlarged scale) when four Y component 8x8-squares are collected -
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you are to image four 8x8-squares in the centre, the two 
(uppermost) have been drawn, the third is being drawn:

 

The two pictures below the following picture (which takes up 3.2 
Kb) are this picture with every second vertical line drawn black, 
but scanned in different ways: for the colour components, two 
pixels are collected in the vertical and the horizontal direction, 
respectively (that is, (Hi, Vi) = (1, 1) for the colour components, and
(Hi, Vi) = (1, 2) and (2, 1) for the Y component). In the first picture 
(which takes up 5.9 Kb) the colours are correct, in the second 
picture (which takes up 4.7 Kb) the colours are faded, because they 
are mixed with the black of the lines:

 

 

The frame segment SOF consists of the following bytes: the marker 
(255, b), where the byte b specifies the scanning mode. We assume 
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here that b = 192, meaning the baseline sequential DCT mode. Then
the pair of bytes stating the length of the segment (including these 
two bytes), this pair is (0, 8 + 3 * the number of components). Then 
a byte stating the number of bits of the colour values, here set to 8 
(meaning that the colour values are bytes), but it is 12 for the 
extended mode. Then a pair of bytes (b1, b2) stating the height (= 
b1 * 256 + b2) of the picture and a pair of bytes stating the width. 
And finally a byte stating the number of components (1-4), and for 
each component these bytes: the component identifier (byte), Hi (½ 
byte) and Vi (½ byte)(byte = Hi * 16 + Vi) and the quantization table 
destination selector (byte).

The pair (Hi, Vi) is here (1, 1) for the colour components and (1, 1), 
(1, 2), (2, 1) or (2, 2) for the Y component. The quantization table 
destination selector is one of the numbers 0-3, for instance 0 for 
the Y component and 1 for the colour components.

The Huffman table segment DHT

Usually there are two Huffman table segments in the file for a grey 
scale picture and four for a colour picture: for each component the 
DC and the AC numbers are coded differently, and the Y 
component and the two colour components are coded differently. 
In a Huffman segment the information (after the marker and the 
pair of bytes stating the length) is arranged in this way: the first 
half byte is 0 if the Huffman tables are for DC numbers and 1 if they
are for the AC numbers. The next half byte is the Huffman table 
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destination identifier (0 or 1), for instance 0 for the Y component and
1 for the colour components (to be referred to in the scan segment 
SOS where the Huffman tables are specified). The following 
sequence of 16 bytes is the list BITS, stating for i = 1, ..., 16 the 
number of codes of length i. And then comes the list HUFFVAL of 
Huffman values: for each code length different from zero, there 
will be just as many values as there are codes of this length. If we 
call the number of Huffman values nhv, the number of bytes in the 
segment (including the pair stating the length) is 19 + nhv.

The Quantization table segment DQT

A quantization table is a 8x8 matrix of bytes ordered after the 
zigzag principle. There are usually different quantization tables for
the Y component and for the colour components. In the annex 
"Examples and guidelines" of T.81 you can find the following for 
respectively the Y component and the colour components:

      16 11 10 16 24   40   51   61

      12 12 14 19 26   58   60   55

      14 13 16 24 40   57   69   56

      14 17 22 29 51   87   80   62

      18 22 37 56 68   109 103 77

      24 35 55 64 81   104 113 92

      49 64 78 87 103 121 120 101

      72 92 95 98 112 100 103 99
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      17 18 24 47 99 99 99 99

      18 21 26 66 99 99 99 99

      24 26 56 99 99 99 99 99

      47 66 99 99 99 99 99 99

      99 99 99 99 99 99 99 99

      99 99 99 99 99 99 99 99

      99 99 99 99 99 99 99 99

      99 99 99 99 99 99 99 99

It is mentioned that "If these quantization values are divided by 2, 
the resulting reconstructed image is usually nearly 
indistinguishable from the source image". With our program 
"JPEG_File" you can see the tables for a picture (using the 
sequential DCT procedure and) given the name "pict". In our 
program to produce a (true) JPEG file we have chosen another table
for the Y component than the above, namely the following used in 
an image editing program (IrfanView), by setting the quality to 70 
per cent:

      10 7   6   10 14 24 31 37

      7   7   8   11 16 35 36 33

      8   8   10 14 24 34 41 34

      8   10 13 17 31 52 48 37

      11 13 22 34 41 65 62 46

      14 21 33 38 49 62 68 55
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      29 38 47 52 62 73 72 61

      43 55 57 59 67 60 62 59

A quantization table is specified in a DQT segment. A DQT segment 
begins with the marker DQT = 219 and the length, which is (0, 67). 
Then comes a byte the first half of which here is 0, meaning that 
the table consists of bytes (8 bit numbers - for the extended mode 
it is 1, meaning that the table consists of words, 16 bit numbers), 
and the last half of which is the destination identifier of the table (0-
3), for instance 0 for the Y component and 1 for the colour 
components. Next follows the 64 numbers of the table (bytes).

The scan segment SOS

Just after the scan segment SOS comes the encoded data of the 
picture, and the scan segment specifies the Huffman tables to be 
used for the components. The segment begins with the marker SOS
= 218 and the length, which is (0, 6 + 2 * the number of 
components). Then comes a byte stating the number of 
components (1-4), and then for each component two bytes, the 
first is the component identifier (defined in the frame segment) 
and the second is divided up in two parts, the first stating the 
destination selector of the DC Huffman table and the second the 
destination selector of the AC Huffman table (for instance 0 for the 
Y component and 1 for the colour components). The segment 
closes with three bytes which in our case (sequential DCT) are 0, 63
and 0 (the last divided in two half bytes).
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The guidelines and the implementation

The guidelines

The recommendation T.81 closes with a list of patents that may be 
required in relation to implementation of the arithmetic coding 
and the hierarchical processes (and which is probably the reason 
why these methods are not more wide spread) as well as a 
bibliography. But just before these annexes is an annex called 
"Examples and guidelines" (which "does not form an integral part 
of this Recommendation/International Standard"). In this annex 
you can find the quantization tables shown above and the Huffman
tables we have shown and used in our (true) JPEG programs. As 
regards the quantization tables it is said that: "These are based on 
psycho-visual thresholding and are derived empirically using 
luminance and chrominance and 2:1 horizontal subsampling. 
These tables are provided as examples only and are not necessarily
suitable for any particular application. These quantization values 
have been used with good results on 8-bit per sample luminance 
and chrominance images". The Huffman tables "have been 
developed from the average statistic of a large set of images with 8-
bit precision". The annex also includes procedures for generating 
the lists which specify a Huffman code table, namely: 1 The 
procedure mentioned above for the construction a Huffman tree 
on the basis of frequency and how to find the code lengths from 
the tree and count the number of codes of each length in order to 
get the list BITS (and possibly revise this list, so that it goes from 1 
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to 16). 2 The procedure for sorting the Huffman values according 
to code length to get the list HUFFVAL. Because we imagine that 
we have imported these lists, we will not here go into details with 
these procedures - we will show the programs in Appendix 2.

The implementation

The colour space designation, in our case the conversion from RGB 
triples to YCbCr triples (by linear transform RGB  YCbCr shown →
in part one), is not mentioned at all in T.81. Things like this belong 
to the concrete implementation of the JPEG method, and the 
implementation used is specified in one or more APP segments. 
These are two sorts of implementation: the interchange format, in 
which all the necessary tables are included in the file, and the 
abbreviated format, in which some of the tables (possibly all) are 
missing, because the application supplies them (possibly installed 
via the abbreviated format for table-specification, being a JPEG file 
without colour data).

Here we apply the interchange format specified in an APP0 
segment having these bytes after the pair (0, 16) stating the length 
of the segement:

    the identifier (= JFIF): the five bytes 74, 70, 73, 70 and 0 forming 
the string of characters "jfif#"

    the version (pair): in our case (1, 2)

    units (byte): 0
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    Xdensity (pair): (0, 1)

    Ydensity (pair): (0, 1)

    Xthumbnail (byte): 0

    Ythumbnail (byte): 0

The X- and Ydensity is respectively the horizontal and vertical 
pixel density measured in dots per inch (units = 1) or dots per cm 
(units = 2). We have chosen X = 1 and Y = 1 and no units (units = 0) 
meaning that such a default print information is not present. X- 
and Ythumbnail is the width and the height of a thumbnail picture,
respectively. We have set these numbers to 0, meaning that such a 
picture is not stored in the header. In the opposite case the data of 
this (the RGB values, for instance) must be stored in the segment 
just after the above bytes, or in an APP segment following this APP 
segment.

If there are no APP segments, you get the default implementation, 
which is the one we use here. A description of this implementation 
can be found in "JPEG File Interchange Format/Version 1.02" 
(1992). There are no default quantization tables and Huffman 
tables. If some of these are missing, it must be because an 
abbreviated format is used, and the tables must appear in the 
program to open the file and referred to in an APP segment.
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Program for making a grey scale file

Now for the program that can produce a grey scale JPEG file. We 
assume that the width and the height of the picture are divisible by
8, and set wid8 = width div 8 and hei8 = height div 8. And we 
assume that the colour values are given in form of a memory-block
pb of a bitmap, so that the colour value (byte) of the point having 
screen coordinate set (i, j) (i = 0, ..., width-1, j = 0, ..., height-1), is 
pb[(height-1 - j) * width + i]. More precisely: we assume that the 
picture is given as a colour picture in BMP format, and we use only 
the part of it lying within the largest domain that can be regularily 
divided up in 8x8-squares, and we construct pb by taking the 
average of the RGB values.

We have written the markers (and their segments) in this order: 
SOI, APP, DQT, SOF, DHT, DHT, SOS (there are two of the DHT 
segments, because there are two Huffman codings). The last 
segment - SOS - marks the beginning of the stream of the encoded 
data, and after this the file closes with the marker EOI. We have for 
the DC and for the AC numbers calculated the arrays EHUFSI[val] 
and EHUFCO[val][i] of the size of the code assigned to the Huffman 
value val and the code itself. In the program these arrays are called
ehufsid[val] and ehufcod[val] for the DC numbers, and ehufsia[val] 
and ehufcoa[val] for the AC numbers.

For the 8x8-square having coordinate set (i0, j0) (i0 = 0, ..., wid8-1, 
j0 = 0, ..., hei8-1) and for the point in the square having coordinate 
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set (i, j) (i, j = 0, ..., 7), the screen coordinate set is (i0 * 8 + i, j0 * 8 + 
j). For each 8x8-square we have an 8x8-matrix f of colour values 
(signed bytes - we have subtracted 128 from the original colour 
values (level shift) in order to get smaller numerical values), and by 
discrete cosine transform and quantization and round off, we get 
an 8x8-matrix g(u, v) of integers. This procedure (or rather, 
function) is called costrans(f): g = costrans(f). The inverse of the 
zigzag transform (iz: (i, j)  [1, ..., 64]) is composed of two arrays →
zx[l] and zy[l] from 1 to 64 (so that the zigzag transform of (zx[l], 
zy[l]) is l), and by this g is converted to a 64-array w (from 1 to 64). 
w[1] is the DC number, from this we subtract the preceding DC 
number (stored in the variable dc) getting the difference diff. We 
get the binary digit expression of an integer n by our function 
digit(n), and this array (from 1 to size(n)) is inserted in the variable 
c array (from 1 to 10). The procedure that writes the bit (which is 
of the form c[j], where c is either a code word or a digit expression)
into the file (called fu) is denoted wbit(bit) - the (global) variables 
b0, b and q are used in this procedure. The programs for costrans 
and wbit are shown after the program for the scanning procedure:

  b0 = 0

  b = 0

  q = 256

  dc = 0

  for j0 = 0 to hei8 - 1 do

    for i0 = 0 to wid8 - 1 do
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      begin

        for j = 0 to 7 do

          for i = 0 to 7 do

            f[i, j] = pb[(height - 1 - (j0 * 8 + j)) * width + (i0 * 8 + i)] - 128

        g = costrans(f)

        for l = 1 to 64 do

          w[l] = g[zx[l], zy[l]]

        diff = w[1] - dc

        dc = w[1]

        val = size(diff)

        e = ehufsid[val]

        c = ehufcod[val]

        for j = 1 to e do

          wbit(c[j])

        if diff <> 0 then

          begin

            c = digit(diff)

            for j = 1 to val do

              wbit(c[j])

          end
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        r = 64

        while (r > 1) and (w[r] = 0) do

          r = r - 1

        if r > 1 then

          begin

            l = 1

            m = 0

            while l < r do

              begin

                l = l + 1

                n = w[l]

                if n = 0 then

                  begin

                    m = m + 1

                    if m = 16 then

                      begin

                        e = ehufsia[240]

                        c = ehufcoa[240]

                        for j = 1 to e do

                          wbit(c[j])
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                        m = 0

                      end

                    end

                  else

                    begin

                      k = size(n)

                      val = m * 16 + k

                      e = ehufsia[val]

                      c = ehufcoa[val]

                      for j = 1 to e do

                        wbit(c[j])

                      c = digit(n)

                      for j = 1 to k do

                        wbit(c[j])

                      m = 0

                    end

                end

          end

        if r < 64 then

          begin
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            e = ehufsia[0]

            c = ehufcoa[0]

            for j = 1 to e do

              wbit(c[j])

          end

      end

The program for the function costrans(f), which cosine transform 
and quantize the 8x8-matrix f[i, j] (of signed bytes) giving the 8x8-
matrix g[u, v] (of integers), is divided up in four cases: u = 0 and v = 
0, u = 0 and v > 0, u > 0 and v = 0 and u > 0 and v > 0. If the 64-array 
of the quantization table is called quant[k] and the zigzag function 
is called iz(i, j), we have beforehand calculated the matrix cq[i, j] = 4
* quant[iz(i, j)] (i, j = 0, 1, ..., 7) (of integers) and the matrix cs[i, j] = 
cos((2 * i + 1) * j * pi / 16) (i, j = 0, 1, ..., 7) (of reals). The programs 
for the four cases of g[u, v] can look like this:

    s = 0

    for i = 0 to 7 do

      for j = 0 to 7 do

        s = s + f[i, j]

    g[0, 0] = round(s / (2 * cq[0, 0]))
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    for v = 1 to 7 do

      begin

        s = 0

        for j = 0 to 7 do

          begin

            t = 0

            for i = 0 to 7 do

              t = t + f[i, j]

            s = s + cs[j, v] * t

          end

        g[0, v] = round(s / (sqrt(2) * cq[0, v]))

      end

    for u = 1 to 7 do

      begin

        s = 0

        for i = 0 to 7 do

          begin

            t = 0

            for j = 0 to 7 do
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              t = t + f[i, j]

            s = s + cs[i, u] * t

          end

        g[u, 0] = round(s / (sqrt(2) * cq[u, 0]))

      end

    for u = 1 to 7 do

      for v = 1 to 7 do

        begin

          s = 0

          for i = 0 to 7 do

            begin

              t = 0

              for j = 0 to 7 do

                t = t + cs[j, v] * f[i, j]

              s = s + cs[i, u] * t

            end

          g[u, v] = round(s / cq[u, v])

        end
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Finally the procedure wbit(bit) that writes the bit "bit" (defined as 
a byte, since a program does not deal with bits) into the file fu. We 
get the bits from code words or from the digits of numbers, and 
before the insertion in the file these are collected in 8-blocks which
are converted to bytes. We call the current byte b (initially set to 
0), and if we have an integer q which starts with 256 and which 
before each insertion of the bit in b is divided by 2, then the 
addition of the (new) bit means that b must be increased with bit * 
q: b = b + bit * q. When q = 1, b is written into the file and q is again 
set to 256. If b = 255 (8 figures 1), the writing must be followed by 
the writing of the zero byte b0 (8 figures 0)(byte stuffing), so that 
255 (during the decoding) is not mistaken for the beginning of a 
marker. The writing procedure wbit could look like this:

  procedure wbit(bit: byte)

  begin

    q = q div 2

    b = b + bit * q

    if q = 1 then

      begin

        write(fu, b)

        if b = 255 then

          write(fu, b0)

        b = 0
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        q = 256

      end

  end

The program ends with this procedure that writes the last byte b if 
q is not set to 256 (indicating that b is not yet written), setting the 
rest of the bits of b to 1 (bit padding):

  e = size(q) - 1

  p = 1

  for i = 1 to e do

    begin

      b = b + p

      p = 2 * p

    end

  write(fu, b)

If the last byte b is 255, it must be followed by the zero byte b0. At 
the very end we write the marker EOI = (255, 217) (end of image) 
and close the file.
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Program for drawing a grey scale picture

Now to the program that can read a grey scale JPEG file and draw 
the picture. It is not required that the segments are written in a 
specific order (except that APP0 must come just after SOI), 
therefore the program that reads the file must seek after markers, 
and when such a marker is found (which is different from SOI and 
EOI), the program must read the following pair of bytes stating the 
length of the segment. During this reading we must continuously 
count the number of bytes read by adding 1 to a number r starting 
with 0, and when all the segments are read (and the information is 
worked up for the arrays we make use of), go to the place r = rhead 
where the data begin (just after the SOS segment - rhead is the 
number of the last byte in SOS).

The coded data are used bit by bit, but they lie in the file as bytes, 
as each 8-block of bits is converted to a byte when the file is 
written. Therefore we must have a procedure which gives us the 
next bit and reads the next byte every time 8 bits are used. We call 
this procedure nbit, and the program for it is shown at the end in 
this section.

The program is arranged so that an 8x8-square is drawn (via a 
"setpixel" procedure) every time the necessary bytes are read to 
form a 64-array w[l], l = 1, ..., 64. The reading is controlled by the 
number l, successively increased by 1 every time a number is 
inserted in w[l]. When l = 64 w is converted to an 8x8-matrix via 
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the zigzag function, and this 8x8-matrix (g(u, v)) is submitted to 
de-quantization and the inverse cosine transform giving the 8x8-
matrix f[i, j] (i, j = 0, ..., 7) of colour values (signed bytes made to 
bytes by adding 128 to them). If the 8x8-square has the coordinate 
set (i0, j0) (i0 = 0, ..., wid8-1, j0 = 0, ..., hei8-1), the point to be 
coloured with the value f[i, j] has the coordinate set (i0*8 + i, j0*8 + 
j). When the 8x8-square is drawn, l is again set to 1 and the 
coordinate set (i0, j0) of the 8x8-square is altered to the coordinate 
set of the next square, namely i0 = i0 + 1 for i0 < wid8, and i0 = 0 and 
j0 = j0 + 1 for i0 = wid8.

The procedures that decode the DC and the AC codes are called 
decoded and decodea, respectively. They give a number val used by 
the procedure num to calculate a number m. The programs for 
these procedures are shown after the main program.

For l = 1 decoded is applied. It gives a number val stating the 
number of bits to be read next, and these make up the digit 
expression of a number m calculated by num, and m added to the 
preceding DC number (stored in the variable dc0) is the DC term of 
w: dc = m + dc0, w[1] = dc.

For l > 1 decodea is applied. It gives two half-bytes nz and val. The 
first half-byte nz states a number of zeros, and the second half-
byte val states the number of bits to be read next if val > 0. In this 
case (val > 0), l is increased by 1 nz times (if nz > 0), and for each of 
these l's w[l] is set to zero. Then l is again increased by 1, and the 
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next val bits make up the digit expression of a number m 
calculated by num and this is w[l]. If val = 0, nz is either 15 or 0. If 
nz = 15, l is increased by 1 16 times and for each of these l's w[l] is 
set to zero. If nz = 0, this indicates that all of the following AC terms
are zero, that is, l is increased by 1 until l = 64 and for each of these 
l's w[l] is set to zero.

When l = 64 the array w[l] is completed and we can draw the 8x8-
square. In order to draw to picture faster, we will restrict the 
calculations (for each (i, j)) in the inverse cosine transform to u, v =
0, ..., 5, so that we only use the first 36 of the 64 terms. Because of 
the uncertainty of the calculations, the colour values (after the 
addition of 128) can be smaller than 0 or larger than 255, and may 
therefore have to be clambered.

The reading of the data part of the file and the drawing of each 
8x8-square take place in a loop (drawloop) that is set to stop when 
the end of the file is reached. The (global) variable r, increased by 1
for each time a byte is read from the file, starts with r = rhead (the 
last byte of the header section):

    r = rhead

    i0 = 0

    j0 = 0

    l = 1

    s = 8
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    b = 0

    dc = 0

    dc0 = 0

  drawloop

    if l = 1 then

      begin

        dc0 = dc

        decoded

        num

        dc = m + dc0

        w[1] =dc

      end

    decodea

    if val > 0 then

      begin

        if nz > 0 then

          for i = 1 to nz do

            begin

              l = l + 1

              w[l] = 0
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            end

          num

          l = l + 1

          w[l] = m

        end

    if (nz = 15) and (val = 0) then

      for i = 1 to 16 do

        begin

          l = l + 1

          w[l] = 0

        end

    if (nz = 0) and (val = 0) then

      while l < 64 do

        begin

          l = l + 1

          w[l] = 0

        end

    if l = 64 then

      begin

        l = 1
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        for j = 0 to 7 do

          for i = 0 to 7 do

            begin

              t = w[1] * cq[0, 0]  / sqrt(2)

              for v = 1 to 5 do

                t = t + cs[j, v] * cq[0, v] * w[iz(0, v)]

              s = t / sqrt(2)

              for u = 1 to 5 do

                begin

                  t = w[iz(u, 0)] * cq[u, 0] / sqrt(2)

                  for v = 1 to 5 do

                    t = t + cs[j, v] * cq[u, v] * w[iz(u, v)]

                  s = s + cs[i, u] * t

                end

              k = round(s + 128)

              if k < 0 then

                k = 0

              if k > 255 then

                k = 255

              setpixel(i0 * 8 + i, j0 * 8 + j, k, k, k)

99



            end

        i0 = i0 + 1

        if i0 * 8 >= width then

          begin

            i0 = 0

            j0 = j0 + 1

          end

      end

    goto drawloop

The procedure decoded decodes the Huffman codes for the DC 
numbers (l = 1) and the procedure decodea decodes the Huffman 
codes for the AC numbers (l > 1). They use the arrays mincode[k], 
maxcode[k], valptr[k] and huffval[k], constructed from the 
Huffman tables. For the Huffman tables for the DC numbers these 
arrays are called mincoded[k], maxcoded[k], valptrd[k] and 
huffvald[k], and for the Huffman tables for the AC numbers they 
are called mincodea[k], maxcodea[k], valptra[k] and huffvala[k]. 
The procedures decoded and decodea contain the procedure nbit that
reads the next bit. The program for decoded can look like this:

  c = 0

  j = 0

  while c > maxcoded[j] do
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    begin

      nbit

      c = 2 * c + bit

      j = j + 1

    end

  val = huffvald[valptrd[j] + c - mincoded[j]]

The program for decodea is analogues, except that the number val 
(byte) now is divided up in two half-bytes: nz = val div 16 and val = 
val - nz * 16 - the first half-byte nz stating a number of zeros.

The number val produced by decoded and decodea states the 
number of bits to be read next, and these bits form the digit 
expression of the number m. m is calculated via the procedure 
num, which also makes use of the next bit procedure nbit. However,
if the first bit read is zero, this indicates that the number m is 
negative and its numerical value is then the binary complement of 

the calculated m, that is, m = -(q0-1 - m), where q0 = 2val (the 
reading of the first bit bit1 is controlled by the number z):

  procedure num

  begin

    q0 = round(exp(val * ln(2)))

    q = q0
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    z = 0

    m = 0

    while q > 1 do

      begin

        q = q div 2

        nbit

        if z = 0 then

          begin

            bit1 = bit

            z = 1

          end

        m = m + bit * q

      end

    if bit1 = 0 then

      m = -(q0 - 1 - m)

  end

Now to the procedure nbit, which produces the next bit, called bit, 
in the bit stream, and which is used in the procedures decoded, 
decodea and num. The next bit is taken from an array c[i] from 1 to 
8, which is produced every time 8 bits are used: then a new byte b 
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is read, and c is the digit expression of b: c = digit(b) - the program 
for digit is shown below. The reading of the bits is managed by a 
(global) variable s, which starts with 0, and in each application of 
nbit is increased by 1, and then set to 0 again when s = 8 (we must 
start with s = 8, so that the first byte can be read). However, since 
in the writing of the file we have written a zero byte after each 
byte that is 255, when reading we must skip the next byte when a 
byte is 255. An exception is when the byte after 255 is 217, because 
then we have reached the pair (255, 217), which is the marker EOI 
(end of image), and then the file must be closed and the drawing 
procedure set to stop (by altering a variable z from 0 to 1 and going
to mainloop, the "getmessage" loop of the window). The program 
for nbit could look like this:

  procedure nbit;

  begin

    if s = 8 then

      begin

        r = r + 1

        read(fu, b)

        if b = 255 then

          begin

            r = r + 1

            read(fu, b1)

103



            if b1 = 217 then

              begin

                close(fu)

                z = 1

                goto mainloop

              end

          end

        c = digit(b)

        s = 0

      end

    s = s + 1

    bit = c[s]

  end

Finally, the program for function digit(b), giving the digit 
expression of the byte b. This function is the same as the function 
of the same name used in the writing procedure, apart from the 
fact that it now applies only to bytes and that its array of bits go 
from 1 to 8, so that it can start with zeros:

    q = 128

    i = 0
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    while i < 8 do

      begin

        i = i + 1

        j = b div q

        b = b - j * q

        q = q div 2

        digit[i] = j

      end

The two programs for a colour picture

Two more components now need to be written in the file. The RGB 
colour values are converted to YCbCr colour values by the linear 
transform RGB  YCbCr, so that the three components are the Y →
component, the Cb component and the Cr component. But as 
explained in the section "The frame segment SOF" the components
can be subsampled in relation to each other, and this subsampling 
is determined by pairs (Hi, Vi) (i = 1, 2, 3) for the three components.
Usually the Y component is not submitted to subsampling and the 
two colour components are subsampled in the same way. We 
assume here that this is the case. It means that (Hi, Vi) = (1, 1) for 
the colour components, and that (H1, V1) is either (1, 1), (2, 1), (1, 
2) or (2, 2). We assume first that (H1, V1) = (1, 1) and then that (H1, 

105



V1) = (2, 2), and we formulate the last case so that the formulas and
the programs can be applied unaltered to the all the four cases.

(H1, V1) = (1, 1)  In this case there is no subsampling. For each 
8x8-square we have for each component an encoding and writing 
procedure that is equal to the one used for the grey scale picture - 
the only difference is that we use different quantization and 
Huffman tables for the Y component and the two colour 
components. The writing into the file is controlled by a number cp,
which is 1, 2 and 3, respectively, for the Y component, the Cb 
component and the Cr component.

Like in the grey scale case, the reading of the file and the drawing 
of the picture go on in a loop, but since an 8x8-square cannot be 
drawn until three sequences of data are read, we must store things,
namely the 64-arrays that are the result of each reading. We let the
reading be controlled by a number cp: for cp = 1, 2 and 3, the data 
of respectively the Y component, the Cb component and the Cr 
component are used to form 64-arrays w which are stored in the 
variables wy, wb and wr. Then cp is set to 4, and when cp = 4 the 
arrays wy, wb and wr are converted to 8x8-matrices and submitted
to de-quantization and the inverse discrete cosine transform, 
giving three 8x8-matrices (of integers) which can be regarded as 
an 8x8-matrix of YCbCr triples. The YCbCr triples are converted to 
RGB triples by the inverse of the RGB  YCbCr transform. If we set →
wid8 = width div 8 and hei8 = height div 8, the 8x8-squares can be 
assigned coordinate sets (i0, j0), i0 = 0, ..., wid8-1, j0 = 0, ..., hei8-1, 
and the point to be coloured with the RGB triple (in the 8x8-
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matrix) having coordinate set (i, j) (i, j = 0, ... 7), has coordinate set 
(i0*8 + i, j0*8 + j) in the picture.

(H1, V1) = (2, 2)  This means that, for the two colour components, 
four pixels forming a 2x2-square are regarded as one pixel by 
taking the average value of the colours. For a colour component an 
8x8-square therefore corresponds to a 16x16-square in the picture,
and it must be combined with four 8x8-squares for the Y 
component. The encoded data for these four 8x8-squares are 
written in the file one just after the other in the usual order: left-
to-right and top-to-bottom. After this the data for the 8x8-square 
for the two colour components are encoded and written in the file, 
and then we go to the next 16x16-square. We now assume that the 
width and the height of the picture are divisible by 16. We set wid8 
= width div (H1*8) and hei8 = height div (V1*8), so that the 
rectangles of the dividing up of the Y component (in our concrete 
case, the 16x16-squares) have coordinate sets (i0, j0), i0 = 0, ..., 
wid8-1, j0 = 0, ..., hei8-1.

This procedure (the making of the file) is straightforward, but the 
converse procedure, the reading of the file and drawing of the 
picture is not as simple, because things must be stored and 
combined in the right way. The result of a reading and decoding is 
a 64-array of numbers, and such six arrays must now be stored 
before we can draw a 16x16-square: four arrays for the Y 
component and one array for each of the colour components. In 
order to have a uniform way of combining (for (H1, V1) = (1, 1), (2, 
1), (1, 2) or (2, 2)) we let a 64-array for the Y component be a matrix 
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of 64-arrays, namely (under our present assumption that (H1, V1) =
(2, 2)) a 2x2-matrix of 64-arrays (or equivalent: a 64-array of 2x2-
matrices). We call this wy, so that the four 64-arrays are wy[0, 0][l],
wy[1, 0][l], wy[0, 1][l] and wy[1, 1][l] (l = 1, ..., 64).

As before, the decoding is controlled by a number cp that is 1, 2 
and 3 for the readings of the three components, and 4 for the 
calculations and the drawing of the 16x16-square.

cp = 1  The reading procedure for cp = 1 is run through four times: 
for (i1, j1) = (0, 0), (0, 1), (1, 0) and (1, 1), respectively. Such a pair 
(i1, j1) is denoted pos, and the function that finds the next pair pos 
is called nextpos(pos), so that if pos = (1, 1) then nextpos(pos) is (0, 
0). The program for nextpos is shown below.

A DC number dcy (for the Y component) is found by adding the 
number m (found by decodedy (giving the number val) followed by 
num (calculating m from val)) to the previous DC number stored in 
dcy0 - that for the previous pair pos, which is (1, 1) when pos = (0, 
0) (for the next 16x16-square). The four DC numbers for the Y 
component make up a 2x2-matrix wy1[i1, j1] (i1, j1 = 0, 1) - denoted
wy1 because it is the DC term of the 64-array wy of 2x2-matrices: 
wy[1] = wy1.

The 63 AC numbers (for the (i1, j1)) are found by decodeay (giving 
the numbers nz and val) followed by the procedure formac shown 
below. The result of formac is an array w[l], l = 2, ..., 64 (with the 
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first term unspecified), and this array is stored in wy[i1, j1]: wy[i1, 
j1] = w.

The DC term of wy[i1, j1] is wy1[i1, j1], but the fixing of this can 
wait until cp = 4: wy[i1, j1][1] = wy1[i1, j1].

After the readings for the four 8x8-squares (making up the 16x16-
square) are finished, the pair (i1, j1) is set to (0, 0), and when (i1, j1)
= (0, 0), cp is set to 2 (= cp + 1) for the reading of the Cb colour 
component 8x8-square corresponding to the Y component 16x16-
square.

cp = 2, 3  The forming of arrays wb and wr for the two colour 
components is similar to the one applying to the grey scale 
procedure. For wb (for instance) it goes on in this way: The DC 
number dcb is found by adding the number m (found by decodedc 
(giving the number val) followed by num (calculating m from val)) 
to the previous DC number stored in dcb0. Then the 63 AC numbers
are found by decodeac (giving the numbers nz and val) followed by 
the procedure formac shown below. The result of formac is an array 
w[l], l = 2, ..., 64 (with the first term unspecified), and this array is 
stored in wb: wb = w. The DC term of wb is dcb, but the fixing of 
this can wait until cp = 4: wb[1] = dcb.

cp = 4  cp = 1 has produced a 2x2-matrix of 64-arrays wy[i1, j1] (i1, 
j1 = 0, 1), cp = 2 has produced a 64-array wb and cp = 3 has 
produced a 64-array wr. After this cp is set to 4, and when cp = 4 
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these six arrays are submitted to de-quantization and the inverse 
discrete cosine transform, and the resulting numbers are colour 
values to be combined in the right way to colour the 16x16-square. 
The coordinate set of the 16x16-square is (i0, j0) (i0 = 0, ..., wid8-1, 
j0 = 0, ..., hei8-1). And within such a 16x16-square, the coordinate 
sets for the four 8x8-squares are (i1, j1), i1, j1 = 0, 1, so that the left 
top corner of the 8x8-square (i1, j1) in the picture has coordinate 
set (i2, j2), where i2 = (i0*H1 + i1) * 8 and j2 = (j0*V1 + j1) * 8. Within
an 8x8-square the coordinate sets are (i, j), i, j = 0, ..., 7. For the 8x8-
square with coordinate set (i1, j1) in the 16x16-square with 
coordinate set (i0, j0), the point (i, j) corresponds 1) in the picture, 
to the point having coordinate set (i2 + i, j2 + j), and 2) in the 8x8-
square of the colour components corresponding to the 16x16-
square, to the point having coordinate set (i3, j3), where i3 = 4*i1 + i
div H1 and j3 = 4*j1 + j div V1.

We denote by idcty(w) and idctc(w), respectively, the function that 
de-quantizes and takes the inverse discrete cosine transform of a 
64-array w of an 8x8-square of the Y component and of the colour 
components. For the 8x8-square (i1, j1) (of the 16x16-square of the 
Y component), idcty is applied to the 64-array wy[i1, j1]. We call the
resulting 8x8-matrix fy (fy = idcty(wy[i1, j1])) and let cy be the 
value of fy in the point (i, j): cy = fy[i, j]. For the 8x8-square of the 
colour components (corresponding to the 16x16-square), idctc is 
applied to the 64-arrays wb and wr. We call the resulting 8x8-
matrices fb and fr (fb = idctc(wb) and fr = idctc(wr)) and let cb and 
br be the values of fb and fr in the point (i3, j3) corresponding to (i, 
j) (and (i1, j1)): cb = fb[i3, j3] and cr = fr[i3, j3].
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The YCbCr triple (cy, cb, cr) is converted to the RGB triple (tr, tg, 
tb) by the inverse of the RGB  YCbCr transform. And the point to →
be coloured with this RGB triple has coordinate set (i2 + i, j2 + j):

  if cp = 1 then

    begin

      if l = 1 then

        begin

          dcy0 = dcy

          decodedy

          num

          dcy = m + dcy0

          wy1[i1, j1] = dcy

        end

      decodeay

      formac

      if l = 64 then

        begin

          l = 1

          wy[i1, j1] = w

          pos[0] = i1
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          pos[1] = j1

          i1 = nextpos(pos)[0]

          j1 = nextpos(pos)[1]

          if (i1 = 0) and (j1 = 0) then

            cp = cp + 1

        end

    end

  if cp = 2 then

    begin

      if l = 1 then

        begin

          dcb0 = dcb

          decodedc

          num

          dcb = m + dcb0

        end

      decodeac

      formac

      if l = 64 then

        begin
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          l = 1

          wb = w

          cp = cp + 1

        end

    end

  if cp = 3 then

    begin

      if l = 1 then

        begin

          dcr0 = dcr

          decodedc

          num

          dcr = m + dcr0

        end

      decodeac

      formac

      if l = 64 then

        begin

          l = 1

          wr = w
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          cp = cp + 1

        end

    end

  if cp = 4 then

    begin

      cp = 1

      wb[1] = dcb

      wr[1] = dcr

      fb = idctc(wb)

      fr = idctc(wr)

      for j1 = 0 to v1 - 1 do

        for i1 = 0 to h1 - 1 do

          begin

            wy[i1, j1][1] = wy1[i1, j1]

            fy = idcty(wy[i1, j1])

            i2 = (i0 * h1 + i1) * 8

            j2 = (j0 * v1 + j1) * 8

            for j = 0 to 7 do

              for i = 0 to 7 do

                begin
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                  i3 = 4 * i1 + i div h1

                  j3 = 4 * j1 + j div v1

                  cy = fy[i, j]

                  cb = fb[i3, j3]

                  cr = fr[i3, j3]

                  tr = round(cy + 1.402 * cr + 128)

                  tg = round(cy - 0.3441 * cb - 0.71414 * cr + 128)

                  tb = round(cy + 1.772 * cb + 128)

                  if tr > 255 then

                    tr = 255

                  if tr < 0 then

                    tr = 0

                  if tg > 255 then

                    tg = 255

                  if tg < 0 then

                    tg = 0

                  if tb > 255 then

                    tb = 255

                  if tb < 0 then

                    tb = 0
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                  setpixel(i2 + i, j2 + j, tr, tg, tb)

                end

          end

      i1 = 0

      j1 = 0

      i0 = i0 + 1

      if i0 * h1 * 8 >= width then

        begin

          i0 = 0

          j0 = j0 + 1

        end

    end

The function nextpos(pos) can be calculated by this program:

  i = pos[0]

  j = pos[1]

  i = i + 1

  if (v1 = 2) and (j = 0) and (i = h1) then

    begin

      j = 1
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      i = 0

    end

  if (j = v1 - 1) and (i = h1) then

    begin

      i = 0

      j = 0

    end

  nextpos[0] = i

  nextpos[1] = j

The program for formac which, after the decoding decodeay and 
decodeac of the AC part of the Y component and the colour 
components, respectively, forms the AC part of the 64-array w 
(that is, the w[l]'s for l > 1), producing two numbers nz (number of 
zeros) and val (number of digits to be used by num), could look like 
this:

  if val > 0 then

    begin

      if nz > 0 then

        for i = 1 to nz do

          begin

            l = l + 1
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            w[l] = 0

          end

      num

      l = l + 1

      w[l] = m

    end

  if (nz = 15) and (val = 0) then

    for i = 1 to 16 do

      begin

        l = l + 1

        w[l] = 0

      end

  if (nz = 0) and (val = 0) then

    while l < 64 do

      begin

        l = l + 1

        w[l] = 0

      end
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When the width or the height

is not divisible by 8

In our program that produces the JPEG file, we have only used the 
largest part of the picture (beginning at the left top corner) which 
can be regularily divided up in 8x8-(or 16x16)-squares. If the 
dividing up does not fit the picture, the width or/and the height of 
the picture must be increased by the necessary number of pixels, 
and the new vertical and horizontal lines are usually coloured as 
the last vertical and horizontal line of the picture, respectively. 
The program that draws the picture from the file needs no 
changes: it draws in reality the extended picture, but we do only 
see the true part of it, because the drawing window is given the 
true width and height. The top picture (shown on an enlarged 
scale) has width and height of 33 pixels, and the width and the 
height must be increased by 7 pixels in order to be divisible by 8. If 
we extend the width and the height of the drawing window by 7 
pixels, we will see the bottom picture:

 

 

119



Appendix 1: Summary of the header segments

DQT (quantization)

  Marker = (255, 219)

  Length = (0, 67)

  0 (½ byte)

  destination identifier (½ byte)(for instance 0 for the Y component 
and 1 for the colour components)

  the table (64 bytes)

SOF (frame)

  Marker = (255, 192)
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  Length = (0, 8 + 3 * number of components)

  8

  width = b1*256 + b2, pair (b1, b2)

  height = b1*256 + b2, pair (b1, b2)

  number of components (1-3)

  for each component:

    component identifier (for instance 0, 1, 2 for the YCbCr 
components)

    Hi (½ byte)(1 for the colour components, 1 or 2 for the Y 
component)

    Vi (½ byte)(1 for the colour components, 1 or 2 for the Y 
component)

    quantization table destination selector (for instance 0 for the Y 
component and 1 for the colour components)

DHT (Huffman)

  Marker = (255, 196)

  Length = (0, 19 + number of Huffman values (nhv))

  0 for DC, 1 for AC (½ byte)

  destination identifier (½ byte)(for instance 0 for the Y component 
and 1 for the colour components)
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  the list BITS (16 byte)

  the list HUFFVAL (nhv bytes)

SOS (scan)

  Marker = (255, 218)

  Length = (0, 6 + 2 * number of components)

  number of components (1-3)

  for each component:

    component identifier (for instance 0, 1, 2 for the YCbCr 
components)

    destination selector of DC Huffman table (½ byte)(for instance 0 
for the Y component and 1 for the colour components)

    destination selector of AC Huffman table (½ byte)(for instance 0 
for the Y component and 1 for the colour components)

  0

  63

  0
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Appendix 2: Programs for calculating code
lengths from the actual picture

We assume that we have a number (nhv) of (Huffman) values (non-
negative integers) which are assigned frequencies (having sum 1), 
and we order the values according the decreasing frequency. In 
order to avoid that a code consists only of 1's, we add provisionally 
a value whose frequency is half (for instance) of the frequency of 
the last and least value. We call the new number (nhv + 1) of 
Huffman values nhv, and replace nhv by nhv - 1 when we finally 
remove a code from the codes of the largest length. We thus have 
put the values into a one-to-one correspondance with the natural 
numbers 1, 2, ..., nhv, and we have an array a[i] from i = 1 to nhv of 
decreasing frequencies. We let this array of frequencies be the first
in an array of arrays of frequencies: a[1, i] = a[i] for i = 1 to nhv. The
next array of frequencies a[2, i], constructed from a[1, i] as 
explained in the section The Huffman coding, is still decreasing and 
is one shorter than a[1, i]. The last array a[nhv, i] has only one 
element, namely the frequency 1: a[nhv, 1] = 1.

The values (identified with the natural numbers) 1, 2, ..., nhv, are 
the first nodes of the Huffman tree, we identify each new 
constructed node with the succeeding natural numbers nhv+1, 
hnv+2, .... The node for the frequency a[j, i] is denoted node[j, i], so 
that node[1, i] = i for i = 1, ..., nhv. Let next[k] (k = 1, ..., 256) be an 
array (of non-negative integers) initially set to 0, and to be 
constructed so that next[k] is the end-node for the line from the 
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node k. The program that calculates the two double arrays a[j, i] 
and node[j, i] (of frequencies and nodes, respectively) and (from 
node[j, i]) the array next[k] (of next nodes), can look like this:

    n = nhv

    m = n

    for i = 1 to n do

      node[1, i] = i

    i = 1

  0

    m = m + 1

    next[node[i, n - 1]] = m

    next[node[i, n]] = m

    e = a[i, n - 1] + a[i, n]

    j = 1

    if e > a[i, 1] then

      j = 1

    else

      while (e <= a[i, j]) and (j <= n) do

        j = j + 1

    i = i + 1
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    n = n - 1

    if j > 1 then

      for k = 1 to j - 1 do

        begin

          a[i, k] = a[i - 1, k]

          node[i, k] = node[i - 1, k]

        end

    a[i, j] = e

    node[i, j] = m

    if j < n then

      for k = 1 to n - j do

        begin

          a[i, j + k] = a[i - 1, j - 1 + k]

          node[i, j + k] = node[i - 1, j - 1 + k]

        end

    if n > 1 then

      goto 0

The array codesize[k] which for each value k (k = 1, ..., nhv) states 
the code length (= number of lines from k to the end-note having 
frequency 1), can be calculated (from next[k]) by this program:
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    for k = 1 to nhv do

      begin

        j = 0

        i = k

        while i > 0 do

          begin

            i = next[i]

            j = j + 1

          end

        codesize[k] = j - 1

      end

We can assume that no (Huffman) value has so small frequency 
that its code length is greater than 32. The array bits[i] stating for 
each number i from 1 to 32 the number of values k having 
codesize[k] = i, can be calculated by this program:

    i = 0

    while i < 32 do

      begin

        i = i + 1

        bits[i] = 0
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        j = 0

        while j < 255 do

          begin

            j = j + 1

            if codesize[j] = i then

              bits[i] = bits[i] + 1

          end

      end

As no code length must exceed 16, the array bits[i] must possibly 
be revised. This can be done by this procedure (explained in the 
section The Huffman coding):

    i = 32

  0

    if bits[i] > 0 then

      begin

        j = i - 1

        while bits[j] = 0 do

          j = j - 1

        bits[i] = bits[i] - 2

        bits[i - 1] = bits[i - 1] + 1
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        bits[j + 1] = bits[j + 1] + 2

        bits[j] = bits[j] - 1

        goto 0

      end

    else

      begin

        i = i - 1

        if i > 16 then

          goto 0

        else

          begin

            while bits[i] = 0 do

              i = i - 1

            bits[i] = bits[i] - 1

          end

      end

    nhv = nhv - 1

The operations bits[i] = bits[i] - 1 and nhv = nhv - 1 are the 
removing of the provisionally code consisting of only 1's.
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This array bits[i] (i = 1, ..., 16) is the list BITS, and we get the list 
HUFFVAL by diving the set {1, 2, ..., nhv} up according to bits[i]: if 
i1 is the first i such that bits[i] > 0, the first part is the first bits[i1] 
numbers of {1, 2, ..., nhv}, if i2 is the next i such that bits[i] > 0, the 
next part is the next bits[i2] numbers of {1, 2, ..., nhv}, etc. The 
array HUFFVAL[k] (k = 1, ..., nhv) is the sequence of values which 
we have put into a one-to-one correspondance with 1, 2, ..., nhv.

For a colour picture we must have four sets of Huffman values with
associated frequencies: for the DC and for the AC numbers of the Y 
component, and for the DC and for the AC numbers of the colour 
components. We get these four sets by performing a pre-scanning 
of the picture: we let an 8x8-square run through the picture, and 
for the DC numbers of the Y component, for instance, we register 
the numbers size(diff) that appear and calculate for each of these 
its frequency. In this case the possible Huffman values are the 
numbers 0, 1, ..., 11, and if these appear respectively n0, n1, ..., n11 
times, and the number of 8x8-squares is N, then the frequencies 
are the numbers n0/N, n1/N, ..., n11/N.

Finally we show the program which can order a sequence of 
(Huffman) values with attached frequencies according to 
decreasing frequency and count those of non-zero frequency (that 
is, find the number nhv of Huffman values). The maximum possible
value is called max (it is 11 for the DC values and 250 for the AC 
values). The original and the new function is called freq0[val] and 
freq[val], respectively (they are arrays of reals from 0 to max). 
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per[i] is an array from 0 to max of integers which performs the 
permutation of the values:

  for i = 0 to max do

    per[i] = -1

  m = 0

  while m <= max do

    begin

      e = 0

      for i = 0 to max do

        begin

          z = 0

          j = 0

          while (j <= max) and (z = 0) do

            begin

              if i = per[j] then

                z = 1

              j = j + 1

            end

          if (z = 0) and (freq0[i] >= e) then

            begin
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              k = i

              e = freq0[i]

            end

        end

      per[m] = k

      m = m + 1

    end

  j = 0

  for i = 0 to max do

    if freq0[per[i]] > 0 then

      begin

        j = j + 1

        huffval[j] = per[i]

        freq[j] = freq0[per[i]]

      end

  nhv = j

We have made a version (CJPEGg_huf) of our program (CJPEGg) 
which can produce a grey scale file and in which we perform a pre-
scanning that calculates frequencies from which we construct 
Huffman tables. For the DC values we have an array freqc[val] of 
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integers (val = size(diff)) and an integer lc, both starting with 0, and
which for each new value val we meet are increased by 1. When the
pre-scanning is finished, the frequency of val is freqc[val]/lc. The 
same applies for the AC values (val = m*16 + k or 240 or 0).

We will find the Huffman values for three simple grey scale 
pictures of 200x200 pixels:

The first is of only one colour, namely the middle grey value 128, 
corresponding to the signed byte 0. There is only one DC Huffman 
value and one AC Huffman value, namely 0 having frequency 1. The
picture is divided up in 625 8x8-squares, and for each of these the 
encoded data takes up 2 bits. In total 1250 bits = 157 bytes after 
padding with 6 bits. The header takes up 156 bytes and the file ends
with the two bytes EOF, therefore the file takes up 156 + 2 + 157 = 
315 bytes.

The second picture (the left below) is of two colours. There are 
three DC Huffmann values: 0 with frequency 0.8816, 6 with 
frequency 0.08 and 7 with frequency 0.0384. There are five AC 
Huffman values: the first 0 with frequency 0.86..., the second 194 
with frequency 0.03.... The reason for the non-zero AC values is 
that the vertical division line lies inside some of the 8x8-squares. 
The file takes up 485 bytes.

The third picture (the right below) is also of two colours. The 
division is coincident with the division in 8x8-squares, so that 
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there are 625 of these small pictures. We have in this case set all 
the quantization numbers to 1 (quality = 100 per cent). As all the 
8x8-squares are identical, there are only two DC Huffman values: 0 
and a value used only for the first square, and thus having 
frequency 1/625 = 0.0016. The two colours are black and white, 
having colour values (as signed bytes) -128 and 127, respectively, 
and the average value is -16.5 (because there is a little more black 
than white). Therefore the first DC number is 8*(-16.5) = -132, 
having size 8, which is the non-zero DC Huffman value. The 
Huffman value 0 is assigned code word "0" and the Huffman value 
8 is assigned code word "10", therefore the DC part of the encoded 
data for the first 8x8-square takes up 2+8 = 10 bits, and the others 1 
bit. All the AC parts of the encoded data for the 8x8-squares are 
identical and take up 386 bits. In total the encoded data should take
up 1*(10 + 386) + 624*(1 + 386) = 241884 bits = 30236 bytes after 
padding with 4 bits. The header takes up 172 bytes and the file ends
with the two bytes EOF, therefore the file should take up 30236 + 
172 + 2 = 30410 bytes. But in reality it takes up 31192 bytes - 782 
bytes more. The reason for the difference is that the byte 255 (8 
figures 1) has appeared 782 times in the running conversion of 8-
blocks of bits into bytes, and thus has been followed by the zero 
byte.
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The condition that no code must consist only of 1's, seems not to 
be strictly necessary: if we omit it, some image programs accept 
the file (Paint and Internet Explorer, for instance), but some do not 
(the image shower of Windows and Adobe Photoshop, for instance).

The procedure which limits the length of the code words to 16, can 
of course only come into play for the AC values and it presupposes 
that the picture has a certain size and variation of colours, but the 
operation of it is not a seldom phenomenon: the examples of 
Difficult pictures in part one (of only 400 pixels) activate the 
procedure.
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